
Famous programmer and open source activist Richard Stallman has often complained that code on the web is unreadable, and that it is impossible to determine its intentions by looking at it. In order to make javascript code (which is always accessible to a website's user) fast and unreadable, developers use code obfuscators, which rename variables and remove whitespace. Minified and obfuscated code is often especially difficult to read because it appears in blocks. In order to help cranky old developers like Mr. Stallman read code, you will be writing a program that neatly formats javascript code.

Fortunately, JavaScript looks a lot like Java: its instructions are delimited by semicolons and its code blocks are delimited with curly braces. Your job will be to add new lines after each instruction, correctly indent the code, and make sure that curly braces and parentheses are closed in the correct order. By using a stack and a counter, you should also be able to determine the indentation level of the code, and determine if any parentheses and curly braces are missing, or in the wrong order. If you catch any code block or parentheses errors while neatly formatting your code, the program should stop and report the error to the user at the end of the now neatly formatted file.

How it works: Read through the JavaScript file character by character and copy it over to a new string. Every time you encounter a curly brace, or a semicolon (outside a for loop), add a newline character, as well as the correct number of tab characters to the new string. The number of tabs starts at 0. Every time you encounter an opening curly brace, add one to the number of tabs. Every time you encounter a closing curly brace, subtract one. Every time you encounter an opening curly brace, push the BRACE BlockType to the stack. Every time you encounter the opening parenthesis (that isn't part of the for loop), push the PAREN BlockType to the stack. Every time you encounter the string "for(, push the FOR BlockType to the stack. Every time you encounter a closing curly brace or closing parenthesis, pop from the stack. If the item you popped does not match the type of closing character you encountered (or is empty), stop and print a new line explaining the problem. You do not need to continue to parse the rest of the file. Note: closing parenthesis matches both PAREN and FOR block types.

NOTE: All exceptions explicitly thrown in Required Classes except for IllegalArgumentException are custom exceptions that need to be made by you.

Your Task

Given an input javascript (.js) or text (.txt) file, you must format it as per the samples. This includes:
· 		Adding newlines after ; and { and }
· 		NOTE: you must not add newlines after ; iff the ; is in a for statement's parentheses
· 		Checking whether (,), {, } are balanced (e.g. too many closing/openings, missing parentheses / braces)
· 		Proper indentation depending on brace level
· 		You can and should use a stack for those last two items
· 		Input Note: Your input may have newlines and tabs already in it. They may not be correct.
· 		Hint: it's safest to remove all newlines and tabs before processing the file.

Error Checking:
· 		When you encounter any error, you stop going through the input there.
· 		You are mainly formatting. You don't need to concern yourself with something like for (;;;;;). You should detect something like console.log(500;, which is an error.
· 		Rule: ; should never be inside () except when in for loop initialization. You do not need to format JS containing lambdas (if you don't know what this is, don't worry about it). Additionally, there will not be new opened braces or parentheses inside for loop initialization.
· 		If you encounter something like 'foo("my string";', this would be a missing close parenthesis.
· 		You need to print the error you encounter and write it to the end of the output file as a // comment. Examples: Missing close brace; Missing open brace, Missing close parenthesis, Missing open parenthesis, extra of any of those. You do not need to print the location (unless you're doing extra credit).

Required Classes

JavascriptFormatterRunner (driver)
· 		public static void main(String args)
· 		Displays menu asking for name of input file
· 		Rest of program flow follows the following use case:

· 		User is asked for a file name. Assume for example user enters 'input.js'.
· 		File is read, and formatted internally.
· 		Program prints (to Standard Out) the formatted JavaScript from input and any errors. These errors also print to the console.
· 		Program Exits.

JavascriptFormatter
· 		private JSStack stack - This is the stack where you will push and pop parentheses and braces.
· 		private int indentLevel - This is where you store the number of tab ('\t') characters to print before a line
· 		public String format(String input) - this method takes the data from the file and formats it.
· 		public JavascriptFormatter() - constructor. Initialize your stack.

JSStack - you may choose to extend or use an existing stack, or implement your own (we suggest using a linked list type structure). This stack will be of BlockType objects. It would be good practice to implement your own.

If you use Java 1.8's stack, you will likely want to read up on generics and this page. You do not need to use the provided name for the stack, but you must have a stack.

Your stack must have these public methods:

· 		public void push(BlockType b) - pushes b onto the front of the backing data structure.
· 		public BlockType pop() - takes the BlockType that is on top of the backing data structure, saves that value, removes that BlockType from the backing data structure, and returns that BlockType. If the stack was empty, throw an EmptyStackException.
· 		public BlockType peek() - takes the BlockType that is on top of the backing data structure, and returns that value to the caller. Does NOT remove that BlockType from the backing data structure.
· 		public boolean isEmpty() - returns true if stack is empty, false otherwise.

The details for these methods are standard stack methods. You can find those details in the lecture slides.

enum BlockType
· 		BRACE
· 		PAREN
· 		FOR

General Recommendations
You might want to implement a toString() method for classes to make debugging and printing easier. You do not have to do this, but it will help you.

You can feel free to add any extra methods and variables as you see fit (public and private).

UI Required Functions

Output Format:

Example 1:
Gcds-unformat.js contents:
function gcdRec(a, b) {if (b) {return gcd_rec(b, a % b);} else {return Math.abs(a);}}function gcdIter(a,b) {if (a < 0) a = -a;if (b < 0) b = -b;if (b > a) {var temp = a; a = b; b = temp;} while (true) {if (b == 0) return a;a %= b;if (a == 0) return b;b %= a;}}console.log(gcdIter(20,5));console.log(gcdRec(4,3));

Sample IO:

Welcome to the Javascript Formatter.
Please Enter a filename: gcds-unformat.js

------ Properly formatted program ----------
function gcdRec(a, b) {
 if (b) {
 return gcd_rec(b, a % b);
 }
 else {
 return Math.abs(a);
 }
}

function gcdIter(a,b) {
 if (a < 0) a = -a;
 if (b < 0) b = -b;
 if (b > a) {
 var temp = a; a = b; b = temp;
 }
 while (true) {
 if (b == 0) return a;
 a %= b;
 if (a == 0) return b;
 b %= a;
 }
}
console.log(gcdIter(20,5));
console.log(gcdRec(4,3));
--Thank you for making your code readable!---

Example 2:
Contents of extrabrace-unformat.txt:
var swipes=7;var weeks=14;for(var i =1; i<=weeks; i++){for(var j=1; j<=swipes; j++){console.log("Day "+j+" week "+i+" still don't care to eat all the food");}}}

Sample IO:

Welcome to the Javascript Formatter.
Please Enter a filename: extrabrace-unformat.txt
Ending program.

------ Properly formatted program ----------
var swipes=7;
var weeks=14;
for(var i =1; i<=weeks; i++){
 for(var j=1; j<=swipes; j++){
 console.log("Day "+j+" week "+i+" still don't care to eat all the food");
 }
}
}
//ERROR: extra brace found.
--Thank you for making your code readable!---

Example 3:
Contents of extraParen-unformat.js:

var meme=1;var dank=9001;if(meme==1){if((dank>9000))){console.log("over 9000");}}

Sample IO:

Welcome to the Javascript Formatter.
Please Enter a filename: extraParen-unformat.js

------ Properly formatted program ----------
var meme=1;
var dank=9001;
if(meme==1){
 if((dank>9000)))
//ERROR:extra closing parenthesis found
--Thank you for making your code readable!---
Note: you can find more examples in the attached .zip folder.

Extra Credit
You need to include the line and location in both the input file and the stream where the error is found. For a missing parenthesis and a missing brace, you must indicate the position (line and location) of the unmatched character.

Line and location is equivalent to Line/Chr details in Notepad++, or in IntelliJ in the nn:mm; nn = line; mm = location. In vim, nn,mm; nn = line; mm = location.

Famous pogrammer and open source acvist Richars 5
oftn sompaned atcoce on s st

impossii o dsarmine s nientionsby o0k aL L in rder o make
Jaascrpl code (hich s aways accessbie 1 & wbate's wser) fas and
Unrssaanle, devsopars

5 romovs whicspace. Ninifed and obuscaiad code & fan
‘pacaly ffcul o resd bcaus appaars i lacks. I e o hlp
ranky i developers e .Sl rea co0e o4 W b Wik &
program hat neaty formats Javascapt ode.

Fortunatoly JavaScriptlocks o ke Java: s instuctons are dsimiad
by samiclons and 1 code lacks aa dekmded wi cur bacas. Your
il b 1208 s nes, e asch netclon. corscty et e
Code and maks surs et culy eaces and parertheses s closed
hecamect order. By using @ tack aa & couner, you shoud lso b

o dearming he dntation eve f i code, and delerin f any
Parenineses anscury baces ar misEing. o 1 hs om0 order. 0.
Catchany cods lock o paranihases eros whis neaty omating your
Code. th program should sop and rapar e et 1o he user L e end
ofhe now neaty frmatied fle.

Mot worke: R hrughthe JavaScrpt s charactar by charactr
6 copy §over . hew S, Evry i you smcouetera culy bace
o1’ samiclon (ouside & forop) 344 nowina haracer, 2 el 35
ne corec nmbar of s STt he e srg. Th Pumbr o
b Sarts 310, Every ma you encauntor an apening cuty brcs, add
511 he numiberafabs. Every e you ancounara losng culy
o, aubtactone. Every e you sncountor an opanin cul race
push e BRAGE BlockType f the stac.Every me you sncouate he
‘pering parentess (nat o' part o h fr oop]. push h PAREN
BlockTypa o th sack. Everyime you sncountr te s for, push
1he FOR BlckType (0 e stack. Every ime you encounar a cosng
Cltybrace o coding prenthess. 6o fom the Stack I o o
popped does ot matcn o ype ofcosng charactr you ncountarsd
{ar e mpty. siop andprin a v In explanng h prbiam You do
ot e 5 ontinie o parse e 681 f s . N iosng
parsniness maihs bath PAREN and FOR blck s

