College of Sciences
Department of Computer Science
1411319: “Programming Languages and Paradigms”
 Program 2
(This assignment is based on the book “Karel the Robot: A Gentle Introduction to The Art of Programming” by R. E. Pattis)

Your term project is to write a simple but complete compiler for a language that includes most, if not all the features found in all other well-developed languages. By the end of the semester, you should incorporate in this project all the materials we study in this course. The project will be done in stages, starting with a very simple and limited commands version and then extending it to include all the features. The list below shows all the available commands in this language that are used to control the movements of a robot called Karel. Karel’s world can be represented as a two dimensional array.

Karel is a simple and somewhat a primitive robot. He can move in any of the four directions (east, west, north, and south) and can also drop or pick up beepers that he carries in a bag. However, Karel does have some intelligence since he can recognize the following situations:

1. He can’t move if there is an obstacle in the way.
2. He can’t drop a beeper if the bag is empty.
3. He can’t move west or south if he is at position 1,1 or north or east if he is at 100,100.

 The project will be implemented in a few stages.
You are required to write the first phase (stage one) of a project which is a simple program in C++
Stage one: Primitive instructions only.

1. move Karel moves one block forward.
2. turnleft Karel pivots 90 degrees to the left.
3. pickbeeper Karel puts a beeper in the beeper’s bag.
4. putbeeper Karel places a beeper on the corner.
5. turnoff Karel turns itself off.
Therefore, write a program that asks the user the following questions:
1. Please select Karol’s position: Assuming that the array (Karol’s world) is 100 by 100 blocks, anywhere on this array is a valid position. The program should check for invalid input.
2. Generate a number of moves for Karol during this run, say between 50 and 100 use random number generator).
3. Using a random number generator, fill the beeper’s bag with beepers (say 10 to 50).
4. Using a random number generator, place a number of obstacles along Karol’s path; let us assume that the number of obstacles is between 20 and 40.
5. The program will stop when one of the following conditions happen:
a. Karol is to step outside his world.
b. Karol is required placing a beeper when the bag is empty.
c. The instruction “turnoff” is executed.
d. The generated number of moves has reached.

Stage two: Block structuring, conditional, and repetition instructions.
1. BEGIN
<instruction>;
<instruction>;
<instruction>;
....................
<instruction>
END
2. IF <test> THEN <instruction>
3. IF <test> THEN <instruction> ELSE <instruction>
4. ITERATE <positive number> TIMES <instruction>
5. WHILE <test> DO <instruction>

Stage three: Mechanism for defining new instructions and specifying a complete program.
6. DEFINE-NEW-INSTRUCTION <new-name> AS <instruction>
7. BEGINNING-OF-PRORAM
DEFINE-NEW-INSTRUCTION <new name> AS
<instruction>;
<instruction>;
[bookmark: _GoBack]...................
DEFINE-NEW-INSTRUCTION <new name> AS
<instruction>;
<instruction>;
...................

BEGINNING-OF-EXECUTION

<instruction>;
<instruction>;
...................
<instruction>
END-OF-EXECUTION
END-OF-PROGRAM
General Notes:
The bracketed words can be any of the following:
 <instruction> any of the robot instructions (1-10).
 <new-name> any new word in lower case letters, numbers, and/or “-“.
 <positive-number> any positive number.
 <test> any of the following:
 front-is-clear, front-is-blocked,
 left-is-clear, left-is-blocked,
 right-is-clear, right-is-blocked,
 next-to-a-beeper, not-next-to-a-beeper,
 facing-north, not-facing-north,
 facing-south, not-facing-south,
 facing-east, not-facing-east,
 facing-west, not-facing-west,
 any-beepers-in-beeper-bag,
 no-beepers-in-beeper-bag.

