The IBM/Motorola PowerPC support two additional types of addressing modes. One mode, called update addressing, is similar to MIPS base addressing except the base register value is automatically updated with the memory address

How would the MIPS register file have to be altered to accommodate such an addressing mode?

Complete the diagram below to illustrate indexed addressing.

D. (4pts) Give an example of a MIPS instruction that contains an absolute address.

Any of

j
2500

jal
2500

la
$a0, str
E. (5pts) Fill in the blanks in the translation hierarchy diagram shown below. Also indicate, by drawing line(s) from word machine code to the appropriate boxes where the entry is represented in machine code.

[image: image1.wmf]

C program

compiler

assembly code

object code

library routines

loader

memory

machine code

assembler

linker

executable

C program

compiler

assembly code

assembly code

object code

library routines

loader

memory

memory

machine code

assembler

linker

executable

(16 pts) 2. Compiling MIPS Code
Give the shortest sequence of MIPS assembler instructions to implement the C code

Assume that a and b are 11 x 11 arrays of word values (integers), and that the base address of a is in $a0 and the base address of b is in $a1. Register $t0 holds the variable i (that has been initialized to zero prior to entering your code). Register $t1 holds the variable j (that has been initialized to zero) and register $s0 holds the byte variable c. The constant 11 has been loaded into register $s1. (The only pseudoinstruction you can use is mul dest src1 src2).

Outer:

slt
$t2, $t0, $s1

beq
$t2, $zero, exit

0<=i<=10

inner:

slt
$t2, $t1, $s1

beq
$t2, $zero, end_inner
0 <= j <= 10

add
$t2, $t0, $t0

2*i

add
$t2, $t2, $t2

4*i

mul
$t3, $t1, $s1

11*j

add
$t3, $t3, $t3

22*j

add
$t3, $t3, $t3

44*j

add
$t3, $t3, $a1

b[j][i]

lw
$t4, 0($t3)

load b[j][i]

add
$t4, $t4, $s0

b[j][i]+c

add
$t2, $t1, $t1

2*j

add
$t2, $t2, $t2

4*j

mul
$t3, $t0, $s1

11*i

add
$t3, $t3, $t3

22*i

add
$t3, $t3, $t3

44*i

add
$t3, $t3, $a0

a[i][j]

sw
$t4, 0($t3)

a[i][j] = b[j][i] + c

addi
$t1, $t1, 1

j ++

j
inner

end_inner:
addi
$t0, $t0, 1

i ++

j
outer

How many instructions are executed during the running of your code?

How many memory data references will be made during execution?

(19 pts) 3. Assembling MIPS Code
Give the machine code for the MIPS assembler code assembled at the starting address 0x0040 0020. (You may use a combination of decimal, hexidecimal and/or binary encodings.) Note that $a0 can be assembled as 4, $a1 as 5, $t0 as 8, $zero as 0.

 Address

 MIPS assembler

 0x0040 0020

main:
slt
$t0, $a0, $a1

beq
$t0, $zero, exit

addi
$a1, $a1, 4

j
main

exit:
. . .
Machine Code:

slt

beq

addi

j

Update addressing

Memory

op rs rt offset

word or byte operand

base register

Indexed addressing

op

Memory

word or byte operand

index register 1

index register 2

0		4		5		8		0		42

4		8		0			2

8		5		5			4

2		0000 0100 0000 0000 0000 0010 002

_1094998313.doc

C program

compiler

assembly code

object code

library routines

loader

memory

machine code

assembler

linker

executable

C program

compiler

assembly code

assembly code

object code

library routines

loader

memory

memory

machine code

assembler

linker

executable

