I. Assembly Input File
You should be able to read and parse the contents of a simple MIPS assembly program, which will be redirected through standard input (i.e. do not try to open a file in your program). You can assume that every line of the program will contain either a directive or an instruction. No lines will be blank and a label will not appear on a line by itself. You may also assume that there are no more than 100 lines in an assembly file. Lines containing directives have the following format (where brackets indicate an optional element):

[optional_label:]<tab>directive[<tab>operand]

Lines containing instructions have the following format:
 [optional_label:]<tab>instruction<tab>operands

Operands are always comma-separated with no whitespace appearing between operands.
The supported directives are listed in the following table. You may assume that the entire .text segment always precedes the .data segment. You may also assume that the memory allocation directives only ever have a single operand.

	Directive
	Meaning

	.data
	Indicates the start of the data section.

	.text
	Indicates the start of the text section.

	.space n
	Allocate n bytes of memory.

	.word w
	Allocate a word in memory and initialize with w.

The supported instructions include the following. You may wish to consult an additional MIPS reference page for more specific information about the instructions and their machine code formats.
	Instruction
	Type
	Opcode/Funct (decimal)
	Syntax

	ADD
	R
	32
	add $rd,$rs,$rt

	ADDI
	I
	8
	addi $rt,$rs,immed

	NOR
	R
	39
	nor $rd,$rs,$rt

	ORI
	I
	13
	ori $rt, $rs, immed

	SLL
	R
	0
	sll $rd, $rt, shamt

	LUI
	I
	15
	lui $rt, immed

	SW
	I
	43
	sw $rt,immed($rs)

	LW
	I
	35
	lw $rt,immed($rs)

	BNE
	I
	5
	bne $rs,$rt,label

	J
	J
	2
	j label

	LA
	-
	-
	la $rx,label

The registers to be recognized include the following.
	Registers
	Decimal Representation

	$t0-$t7
	8-15

	$s0-$s7
	16-23

	$0
	0

Registers will always be expressed as $[letter][number] or $0.
Note the use of labels in the branch and jump instructions. You will need to calculate the appropriate immediate and targaddr fields for the machine code based on the layout of your assembly file. The immediate field of a branch instruction will be defined using PC-relative addressing where the address of the destination is defined as

 Addr(dest) = Addr(branch) + immed*4

That is, the immediate field represents the distance, in instructions rather than bytes, between the branching instruction and the destination instruction. The targaddr field of the jump instruction will be defined using pseudo-direct addressing where the address of the destination is defined as

Addr(dest) = Addr(jump)[31-28] || targaddr || 00

Where Addr(jump)[31-28] is the 4 most significant bits of the jump instruction, and || denotes
concatenation. Also note the use of the load address instruction. The load address instruction is a MIPS pseudoinstruction
which is supported by many MIPS assemblers, but does not directly correspond to a
MIPS instruction. Our assembler must replace any use of the load address instruction with a lui instruction, followed by an ori instruction. For example,

la $t0,_a
_a: .space 100

should be translated to
lui $t0,_a[31-16]
ori $t0,$t0,_a[15-0]
_a: .space 100

Where _a[31-16] is the upper 16 bits of the address corresponding to label _a, and _a[15-0] is the lower 16 bits of the address corresponding to label _a.
[bookmark: _GoBack]Although this is not realistic, for consistency, we will zero-out all fields which are not well defined for an instruction. These include the rs field for lui and sll as well as shamt for most R-type instructions.

II. Suggested Development Approach

Your assembler, just like a real assembler, will need to make two passes over the assembly file. During the first pass, the assembler should associate each symbolic label with an address. You may assume that the first instruction starts at address 0. You may also assume that memory allocations occur directly after the instructions in the process space. During the second pass, you should translate the symbolic assembly instructions into their corresponding machine code. You should print the address, followed by a space, and then the instruction. Both the address and the instruction should be in hexadecimal format and every instruction should appear on its own line.
You may find the functions fgets and sscanf to be particularly useful.
 char *fgets(char *str, int n, FILE *stream);
int sscanf(const char *str, const char *format, ...);

You may also want to make use of the bitwise left and right shift operators (<< and >>) to
manage the instruction fields easily. There is no need to “translate” decimal values of the instruction fields into binary manually – they are already represented as binary numbers in memory! Also, watch out for signed-ness. Lastly, no error checking is required. You may assume that the assembly input will be correctly formed.

III. Sample Output
A sample executable is provided, but here is quick run-through. Let’s assume the test case
test2.asm contains the following:

 .text
main: la $s0,_a
 lw $t6,0($s0)
addi $t7,$t6,1
sw $t7,0($s0)
.data
_a: .space 4

Then running the sample executable with test2.asm as input yields the following output.

> ./proj1_linprog < tests/test2.asm
0x000000: 0x3C100000
0x000004: 0x36100014
0x000008: 0x8E0E0000
0x00000C: 0x21CF0001
0x000010: 0xAE0F0000

o ettt 5y
K:::y-:mn.m, Yovcan: ,..mnr.‘ﬁ,mw;jr:.mé‘ﬁ ot
3y e o e ok e s O s
il i e conoing o o o Bown et (e s
i mepn e

[ERTSI——

o o

iy e e sy e e g s

e e bt e

e et s et lowin Youmay wih st an

oy e [

iy S B
S o S ooy
e n (S
i 3 I

it | e epreseision

