

1. What would be the output of the following MIPS code?

.globl main
main:
 addu $s7, $0, $ra

 add $s3, $0, $0

 addi $s4, $0, 1
 add $s5, $0, $0
 la $s6, save

 .data
 .align 2
 .globl save

the next line creates an array of 10 words that can be referred to
as “save”
the array is initialized to the 10 values after .word
so the first array entry is a 0 and the last entry is a 2
save: .word 0, 0, 0, 0, 0, 0, 0, 6, 3, 2

 .text

Loop:
 add $t8, $s3, $s3
 add $t8, $t8, $t8
 add $t8, $t8, $s6
 lw $t9, 0($t8)
 bne $t9, $s5, Exit

 add $s3, $s3, $s4
 j Loop
Exit:

 .data
 .globl message1
message1: .asciiz "\nThe value of i is: "
 .text
 li $v0, 4
 la $a0, message1
 syscall
 li $v0, 1
 add $a0, $0, $s3
 syscall

 addu $ra, $0, $s7
 jr $ra
 add $0, $0, $0

2. The following code fragment computes the Kronecker product of two matrices – don’t
worry if you have never heard of Kronecker – this problem assumes no foreknowledge of
this, as you can discern what is being done by examining the code. The matrices a and b
are the input matrices – and c is the output matrix – note that c is larger:

#define SIZE 40
#define KSIZE SIZE*SIZE

int a[SIZE][SIZE];
int b[SIZE][SIZE];
int c[KSIZE][KSIZE];

The actual product can be computed as follows (with somewhat inefficient code):

 for (i=0; i<SIZE; i++)
 for (j=0; j<SIZE; j++)
 for (x=0; x<SIZE; x++)
 for (y=0; y<SIZE; y++)
 c[i*SIZE+x][j*SIZE+y]=a[i][j]*b[x][y];

The choice of loop ordering is, as always, important here for memory performance. In
this case, there are four nested loops – and this code is written in such a way that there are
no dependencies to impede reordering. The code is shown with ordering ijxy (i.e. the
ordering of the loops from inner to outer – as labeled by the iterator of the loop). Which
of the following orderings should be the worst for this loop? By worst, we mean the
ordering which will result in the longest execution time.

a. ijxy
b. jixy
c. xiyj
d. ixjy
e. jyix

