

ORIGINAL ARTICLE

S. Viehmann · A. Borkhardt · F. Lampert

J. Harbott

Multiplex PCR – a rapid screening method for detection of gene rearrangements in childhood acute lymphoblastic leukemia

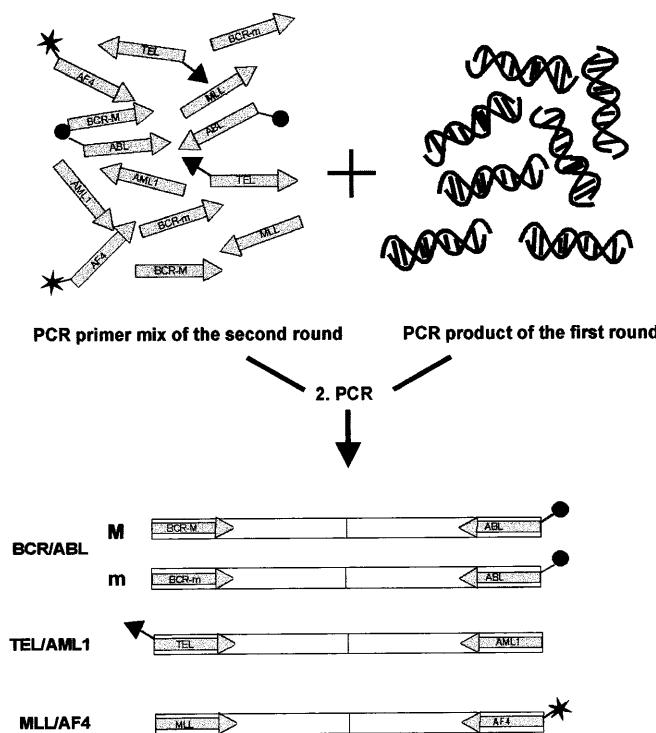
Received: July 27, 1998 / Accepted: January 21, 1999

Abstract Chromosomal rearrangements in childhood acute lymphoblastic leukemia (ALL) play an important role in the identification of clinical relevant subgroups. For rapid and easy detection of the clinically most important gene rearrangements, a nested multiplex reverse transcriptase polymerase chain reaction (multiplex PCR) was developed. This multiplex PCR enables the detection of M-BCR/ABL, m-BCR/ABL, TEL/AML1, and MLL/AF4 fusion transcripts in one PCR reaction. However, the existence of splicing variants and different breakpoints on the DNA level hampers the discrimination of the rearrangements by their fragment size on an agarose gel. Therefore, one of the internal primers of each translocation (ABL-2, TEL-2, AF4-2) was labeled with a characteristic fluorescent dye, and an automatic fluorescence-based DNA fragment analysis was performed. The sensitivity of this multiplex PCR is in the same range as that of the corresponding single PCR reaction and allows a fast screening for the detection of therapy-relevant rearrangements, with a high turnover of samples.

Keywords Multiplex PCR · Chromosomal rearrangements · ALL · Genescan analysis

Introduction

Acute lymphoblastic leukemia (ALL), the most common childhood malignancy, is associated with chromosomal


translocations allowing the identification of prognostically relevant subgroups [17, 26, 29]. These translocations or their molecular equivalents – t(9;22) (BCR/ABL), t(4;11) (MLL/AF4), and t(1;19) (PBX1/EA2) – are used to identify high-risk patients in most large therapy trials [8, 9, 13, 30, 31, 32, 37, 38, 39]. In the German multicenter trials ALL-BFM-95 and CoALL, genetic analysis is centralized and all bone marrow and/or blood samples of children with ALL are routinely screened for these rearrangements by PCR, with the exception of PBX1/EA2. In addition, all samples are screened for TEL/AML1 [t(12;21)] the most frequent fusion gene (25%) of childhood B-cell precursor ALL, which is supposed to have a good prognosis [3, 18, 25, 27, 36, 40, 41]. At present, the PCR of these rearrangements is performed in separate PCR assays, which is not only time and material consuming but also very expensive.

Based on these considerations, we developed a multiplex PCR that allows detection of the rearrangements BCR/ABL minor breakpoint (m), BCR/ABL major breakpoint (M), TEL/AML1, and MLL/AF4 in one step. A primer mix containing seven primers (M-BCR, m-BCR, ABL, TEL, AML1, MLL, AF4) was used for the multiplex PCR, in order to detect all four rearrangements in one assay. To improve sensitivity and specificity, a nested PCR protocol was performed.

Different breakpoints and/or splicing variants are described for BCR/ABL, TEL/AML1, and MLL/AF4 [1, 2, 4, 6, 7, 14, 15, 16, 20, 21, 24, 28, 35, 45] and, consequently, a broad range of different PCR products could originate in the multiplex PCR. The difference of a few basepairs will therefore complicate the determination of the rearrangements by fragment size on an agarose gel. Genescan analysis overcomes this problem by labeling one internal primer of each rearrangement on the 5'-end with a characteristic fluorescent dye (Fig. 1). Using this technique, the rearrangements can be identified not only by their fragment size, but also by their characteristic fluorescence emission.

The study was granted in parts by the *Deutsche Krebshilfe*, the Parents' Leukemia Research Fund Gießen, the *Forschungshilfe Station Peiper*, and the *Deutsche Leukämie Forschungshilfe* (DLFH).

S. Viehmann · A. Borkhardt · F. Lampert · J. Harbott (✉)
Oncogenetic Laboratory, Children's Hospital, University of Gießen, Feulgenstrasse 12, D-35385 Gießen, Germany
e-mail: Jochen.Harbott@paediat.med.uni-giessen.de,
Tel.: 0049-641-99-43426, Fax: 0049-641-99-43485

Fig. 1 The second round of multiplex PCR. One internal primer of each rearrangement is labeled with a characteristic fluorescence dye on the 5'-end: TEL-2 with FAM (▲ blue), AF4-2 with TAMRA (★ yellow), and ABL with JOE (● green)

Patients and methods

Patients and cell lines

Bone marrow or peripheral blood samples of patients with ALL were sent by mail from more than 70 pediatric oncology centers in Germany. The BCR/ABL major breakpoint was tested mainly with samples of CML patients. Ninety patients with ALL and four with CML consecutively enrolled in ongoing studies in Germany (ALL-BFM; CoALL, CML-päd) were screened by single PCR assays and multiplex PCR in parallel. Additionally, 60 patients (54 ALL and six CML) with a known rearrangement were

Table 1 PCR primers used in the multiplex assay.
fd = fluorescent dye;
JOE = green; FAM = blue;
TAMRA = yellow

Multiplex PCR primer		
Primer	Position, orientation	
BCR-M-1	External, sense	Sequence 5'-NNN-3
BCR-M-2	Internal, sense	CCTCTGACTATGAGCGTGCAGAGT
BCR-m-1	External, sense	AGAAAGTGTTCAGAAGCTTCTCCCT
BCR-m-2	Internal, sense	CAGCTCCAATGAGAACCTCACCTCCAGCG
ABL-1	External, antisense	AACTCGAACAGTCCTTCAGCAGCAGCAG
ABL-2	Internal, antisense	CTCAGCGGATACTCAGCGGCATTGCGG
TEL-1	External, sense	ACTGTTGACTGGCGTGATGTAGTTGCTGG
TEL-2	Internal, sense	ACCAGGAGTCCTACCCCTGTCAGTG
AML1-1	External, antisense	CCGGCAGGAGAGCACACCGCGTGATCCAG
AML1-2	Internal, antisense	GTAGGCAGCACGGAGCAGAGGAAGTTGG
MLL-1	External, sense	AACGCCTCGCTCATTTGCGCTGGCTCAG
MLL-2	Internal, sense	CTGAATCCAACAGGCCACCACTC
AF4-1	External, antisense	GGTCTCCCAGCCAGCACTGGTC
AF4-2	Internal, antisense	CTCACTGTCAGTGAAGGTCGTCTCG
		AGCATGGATGACGTTCTGCTGAG
		TAMRA

analyzed by multiplex PCR retrospectively. For positive controls and sensitivity assays, cell lines (K562, SD1, MV4-11, RS4-11, REH, HL60) with the corresponding translocations were used [11, 12, 42, 44]. Mononuclear cells of patients were isolated by centrifugation using Nycoprep 1.077 (Nycomed, Oslo, Norway) and stored at -70 °C prior to use. Cell lines grown in suspension culture were centrifuged and stored at -70 °C.

For sensitivity studies 1 million cells of cell lines carrying one of the rearrangements (K562/M-BCR; SD1/m-BCR; REH/TEL/AML1; MV4-11/MLL/AF4) were serially diluted 1:10 with HL60 cells lacking any of these translocations.

Reverse transcriptase-polymerase chain reaction (RT-PCR) assay

Total RNA was extracted in a single-step method [5] and dissolved in 15 µl dH₂O. Three micrograms of cell-line RNA or 7 µl of patient RNA (about 1–5 µg) were reverse-transcribed with 200 units of SuperScript™ RNase H⁻ reverse transcriptase (GibcoBRL, Eggenstein, Germany). Following denaturation at 70 °C for 10 min, the cDNA synthesis was carried out at 37 °C for 45 min using random hexamer primers in a total volume of 20 µl. Subsequently, the cDNA was heated to 95 °C for 5 min to inactivate the reverse transcriptase and was then stored at -20 °C.

Maximum sensitivity and specificity were achieved by using a nested-PCR protocol. To verify the integrity of the isolated RNA and the correctness of the cDNA synthesis, the ubiquitously expressed ABL gene was amplified in a separate PCR. Primer sequences for the multiplex PCR assay and the amplification of ABL are given in Tables 1 and 2. The first round of PCR was done with the external primers. In the second round the internal primers ABL-2, TEL-2, and AF4-2 marked with a characteristic fluorescent dye at their 5'-end were used (Table 1). Amplification was performed with a Perkin Elmer Thermocycler 9600 (Perkin Elmer, Weiterstadt, Germany).

In the first round of PCR, 1 µl of cDNA was used for the ABL control assay, 1 µl for sensitivity assays, and 3 µl for the multiplex assay. The PCR was carried out in a final volume of 20 µl with 1×PCR-Buffer (GibcoBRL, Eggenstein, Germany), 1.5 mM MgCl₂, 0.2 mM of each dNTP (Boehringer Mannheim, Germany), 4% DMSO (only for the multiplex assay), 1.6 pmol of each primer, and 1 unit Taq polymerase (GibcoBRL, Eggenstein, Germany).

After an initial melting step (90 s at 95 °C), 35 amplification cycles of 15 s at 94 °C, 45 s at 64 °C, and 45 s at 72 °C were performed, followed by an extension step (6 min at 72 °C). One microliter of the first-round PCR product was subjected to the second round of PCR, differing by the annealing temperature (60 °C), the primer concentration (8 pmol), and the number of cy-

Table 2 PCR Primers used in the ABL control assay.
fd = fluorescent dye

ABL control PCR primer	Position, orientation	Sequence 5'-NNN-3	fd
Primer			
ABL-K1a	External, sense	CCAGTAGCATCTGACTTTGAGCCT	—
ABL-K1b	External, antisense	CCAGACTGTTGACTGGCGTGATGT	—
ABL-K2a	Internal, sense	TGAGTGAAGCCGCTCGTTGAACT	—
ABL-K2b	Internal, antisense	TTCACACCATTCCCCATTGTGATT	—

cles (25). Ten microliters of the final PCR products were analyzed on a 1% agarose gel and visualized by ethidium bromide staining.

Genescan analysis

All amplification products which could not be exactly assigned to a rearrangement by fragment size were subsequently characterized by Genescan analysis. Depending on the concentration, the final PCR product was used undiluted or diluted with sterile water 1:10 or 1:30.

One microliter of the undiluted or diluted PCR product was mixed with 0.5 μ l Genescan standard (Genescan-2500TMROX; Perkin Elmer, Weiterstadt) and 2.5 μ l formamide. The samples were denatured at 90°C for 2 min, subsequently chilled on ice, and subjected to electrophoresis using a 5% polyacrylamide gel in an automatic DNA-sequencer 373 A (Perkin Elmer, Weiterstadt). Gels were analyzed using an Apple Macintosh IIci computer and the Genescan software as supplied by the manufacturer.

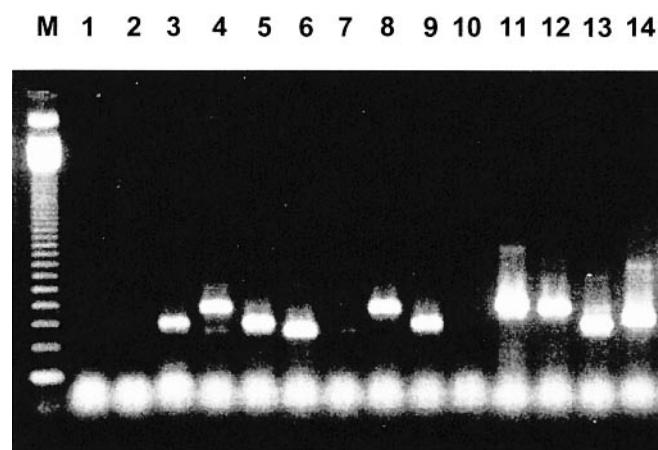
Results

The multiplex PCR assay was able to detect all four rearrangements and their characteristic splicing variants or molecular breakpoints in the cell lines K562 (M-BCR/ABL), SD1 (m-BCR/ABL), REH (TEL/AML1), and MV4-11 (MLL/AF4) and in the patient samples (Figs. 2 and 3).

The sensitivity assays detected one cell harboring the rearrangement in the following dilutions: M-BCR/ABL (K562) 10^{-4} , m-BCR/ABL (SD1) 10^{-3} , TEL/AML1 (REH) 10^{-3} , MLL/AF4 (MV4-11) 10^{-4} (Fig. 4). Whereas the sensitivity for MLL/AF4 (10^{-4}) and m-BCR/ABL (10^{-3}) was of the same order of magnitude as the corresponding single PCR reaction, it was ten times lower for M-BCR/ABL (10^{-4}) and TEL/AML1 (10^{-3}).

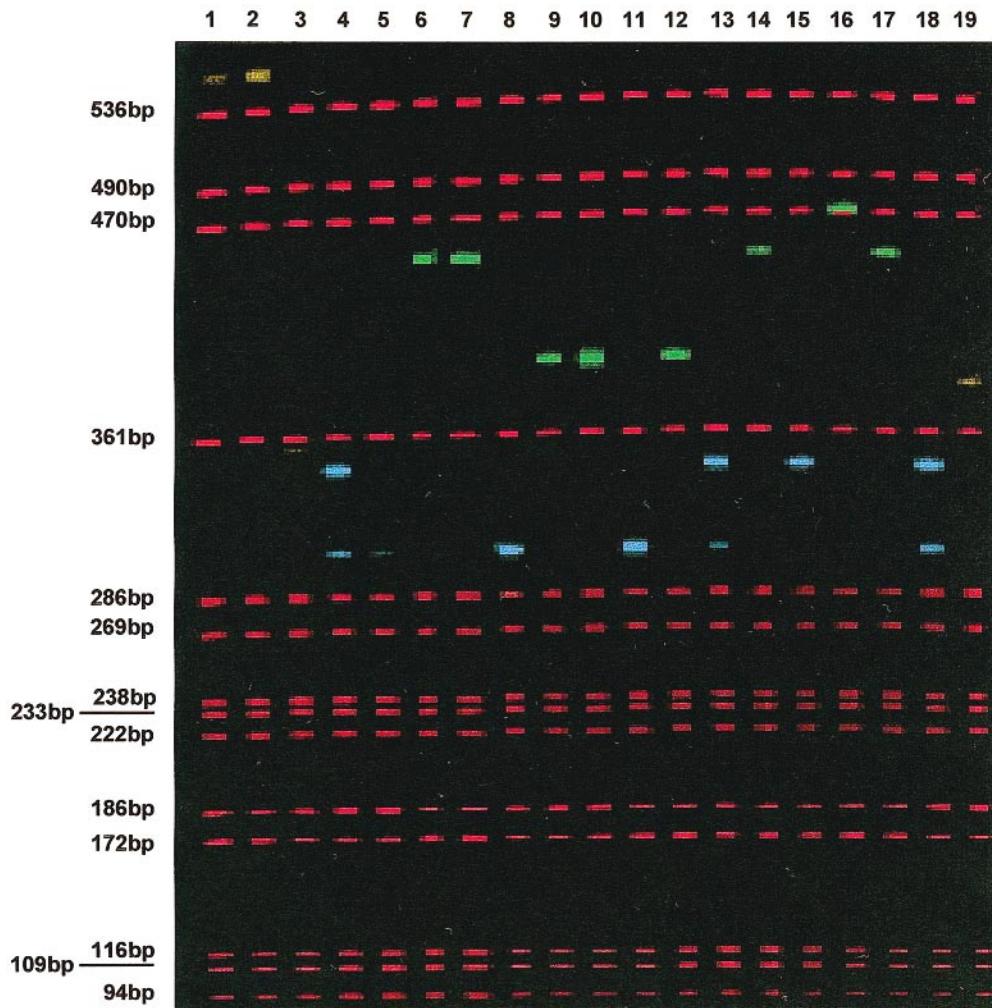
PCR products of cell lines could be discriminated by their fragment size on an agarose gel (Fig. 2) and, additionally, they were analyzed by the Genescan method. With this technique, the PCR product of BCR/ABL showed a green signal with a fragment size of 447 bp (e1/a2) for SD1 and 470 bp (b3/a2) for K562. The REH cell line was detected by a blue double band of 306 and 345 bp, corresponding to the two variants of TEL/AML1 (e5/e2 and e5/e3), and for the MV4-11 cell line one yellow amplification product of 381 bp (e6/c) became visible (Fig. 3).

Of the 60 patients (54 ALL and six CML) analyzed retrospectively by multiplex PCR the results were concordant in 52 cases (seven M-BCR/ABL, five m-BCR/ABL, 36 TEL/AML1, four MLL/AF4). Eight of them,


however, showed no amplification in the multiplex assay but were positive for TEL/AML1 in the single PCR.

Ninety-four patients (90 ALL and four CML) were analyzed prospectively over a period of 2 months with single PCR reactions and multiplex PCR in parallel, and a complete concordance was found in 90 of them. In 67 patients none of the analyzed rearrangements was detected, whereas four showed M-BCR/ABL, five m-BCR/ABL, 13 TEL/AML1, and one the MLL/AF4 rearrangement. In the remaining four cases a TEL/AML1 amplification was visible in the single PCR assay, but no PCR product was observed by multiplex PCR.

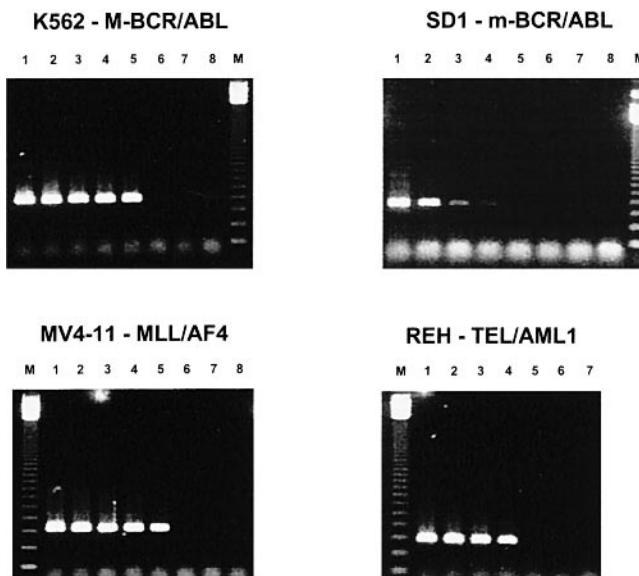
The 12 TEL/AML1-negative patients of both the prospective and the retrospective study were additionally analyzed by the more sensitive Genescan technique. Ten of them showed a weak blue signal, two whereas remained negative.


Discussion

Identification of specific chromosomal aberrations or their molecular equivalents is an important tool for diagnosis and therapy stratification in childhood ALL [17, 26, 29]. Conventional cytogenetics allow the detec-

Fig. 2 Agarose gel analysis of different PCR products from patients and cell lines. Lane M: 123-bp marker; lanes 1, 2, 7, 10: patients with no rearrangement; lanes 3, 5, 9: patients with TEL/AML1 (e5/e2) rearrangement; lane 6: patient with TEL/AML1 (e5/e3) rearrangement; lanes 4, 8: patients with m-BCR/ABL (el/a2) rearrangement. Lanes 11–14, cell lines used as positive controls – lane 11: K562 (M-BCR/ABL), lane 12: SD1 (m-BCR/ABL), lane 13: REH (TEL/AML1); lane 14: MV4-11 (MLL/AF4)

Fig. 3 Genescan analysis of different PCR products from patients and cell lines. BCR/ABL PCR products are labeled in green, TEL/AML1 in blue, MLL/AF4 in yellow, and the internal size marker in red. Lanes 1, 2: cell line RS4-11 (MLL/AF4) diluted 1:30 and 1:10, respectively; lane 3: patient with MLL/AF4 rearrangement; lanes 4, 13, 15: patients with two splicing variants of the TEL/AML1 (the small variant in lane 15 detected only by computer); lanes 5, 8, 11: patients with the small variant of TEL/AML1; lanes 6, 7, 14: patients with m-BCR/ABL gene fusion; lanes 9, 10, 12: patients with b2a2 M-BCR/ABL rearrangement. Lanes 16–19, cell lines – lane 16: K562 (M-BCR/ABL); lane 17: SD1 (m-BCR/ABL); lane 18: REH (TEL/AML1); lane 19: MV4-11 (MLL/AF4)


tion of all these aberrations. However, it is very time consuming, the sensitivity is low, and, especially after mailing, the success rate is relatively low [19, 23]. In addition, cryptic translocations such as t(12;21) are hardly detectable [31, 34]. PCR techniques allow the identification of all clinically relevant aberrations in a fast and sensitive way. For screening, however, several PCR reactions have to be performed in order to detect one of these aberrations in a single patient. This time-consuming and expensive work could be overcome by a multiplex PCR that allowed the detection of all important rearrangements in one assay. Different multiplex PCRs have been reported for leukemias [10, 22, 33, 43], but none of them is able to detect the four rearrangements M-BCR/ABL, m-BCR/ABL, MLL/AF4, and TEL/AML1 in one assay.

Splicing variants and/or different breakpoints are known for these rearrangements. In the majority of patients two types of BCR/ABL exist. The major breakpoint (M-BCR) is found mainly in CML, whereas the minor breakpoint (m-BCR) can be detected in ALL patients [6, 20, 24]. The break of the ABL gene occurs mostly between exon a1 and a2 (rarely between a2 and a3), and in the BCR gene it is located behind exon e1

(m-BCR) or behind exon e13/b2 as well as e14/b3 (M-BCR) [4]. For TEL/AML1, two main forms are described, resulting in a fusion of TEL exon e5 and AML1 exon e2 or e3 [1, 14, 28, 35, 45]. The MLL/AF4 rearrangement shows the largest heterogeneity. In the MLL gene the breaks occur in an 8.3-kb breakpoint region, mainly after exons e6, e7, and e8. For AF4 three different breakpoints are described (b, c, d), and in addition alternative splicing is reported in MLL/AF4 [3, 7, 15, 16, 21].

Because of this molecular heterogeneity, agarose gel analysis might be not sufficient in some cases to identify the specific rearrangement exactly. However, Fluorescent labeling of the internal primer overcomes this problem. With Genescan analysis the existing rearrangement can be determined by its characteristic fluorescence color and fragment size. Furthermore, the Genescan analysis allows the exact size calculation of each PCR product by application of an internal ROX-labeled standard. Therefore, it is possible to determine the splicing variants or breakpoints of the rearrangements.

A complete concordance was observed for the rearrangements M-BCR/ABL, m-BCR/ABL, and MLL/

Fig. 4 Sensitivity assays for the rearrangements M-BCR/ABL, m-BCR/ABL, TEL/AML1, and MLL/AF4 with the corresponding cell lines. *Lane M*: 123-bp marker; *lane 1*: undiluted; *lane 2*: diluted 10^{-1} ; *lane 3*: diluted 10^{-2} ; *lane 4*: diluted 10^{-3} ; *lane 5*: diluted 10^{-4} ; *lane 6*: diluted 10^{-5} ; *lane 7*: cell line HL60 undiluted; *lane 8*: negative control

AF4. All patients positive for one of these rearrangements by single PCR are positive in the multiplex assay as well. For the TEL/AML1 rearrangement, however, a discrepancy became obvious. Of 61 patients with a TEL/AML1 rearrangement in routine single PCR assay, 12 (19.7%) showed no amplification in the multiplex PCR. This could be due to the sensitivity, which is ten times lower (10^{-3}) in the multiplex PCR. The sensitivity of m-BCR/ABL is in the same range as that of TEL/AML1, but no difference to the single PCR reaction is noticeable. It is possible that expression of the TEL/AML1 fusion transcript in patients is lower than that of m-BCR/ABL, whereas in the two cell lines REH (TEL/AML1) and SD1 (m-BCR/ABL) the same expression rate exists.

On the other hand, patients' bone marrow or blood samples sent to our laboratory by mail are 24–48 h old, whereas the RNA samples from cell lines were prepared directly. Cells harboring the TEL/AML1 rearrangement might be more sensitive, and in consequence the amount of RNA could be lower. Possibly, the sensitivity of 10^{-3} achieved by this multiplex assay is too low, whereas the detection level of the single PCR (10^{-4}) is sufficient.

Furthermore, PCR inhibitors of blood and bone marrow samples (e.g., heparin, hemoglobin) could be carried and therefore influence the PCR effectiveness of patient samples, especially in the case of TEL/AML1.

Ten of the 12 TEL/AML1 false-negative cases showed a weak blue signal in the Genescan analysis,

which is more sensitive than a normal agarose gel. In consequence, all samples should be analyzed with the Genescan technique, and other PCR methods, e.g., hot start PCR, should be tested in parallel to optimize the assay. Nevertheless, the multiplex PCR is a powerful tool for detecting the therapy-relevant rearrangements in a short time with a high sample turnover.

Acknowledgments For their excellent technical assistance we are indebted to Christina Böth, Gabriele Jürges, Claudia Keller, and Andrea Richter. We are grateful to our colleagues from all pediatric oncology centers who supplied us with samples from their patients.

References

- Baens M, Peeters P, Guo CY, Aerssens J, Marynen P (1996) Genomic organization of TEL: the human ETS-variant gene. *Genome Res* 6:404–413
- Borkhardt A, Repp R, Haupt E, Brettreich S, Buchen U, Gossen R, Lampert F (1994) Molecular analysis of MLL-1/AF4 recombination in infant acute lymphoblastic leukemia. *Leukemia* 8:549–553
- Borkhardt A, Cazzaniga G, Viehmann S, Valsecchi MG, Ludwig WD, Burci L, Mangioni S, Schrappe M, Riehm H, Lampert F, Basso G, Maseri G, Harbott J, Biondi A (1997) Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. *Blood* 90:571–577
- Chissoe SL, Bodensteich A, Wang YF, Wang YP, Burian D, Clifton SW, Crabtree J, Freeman A, Iyer K, Jian L, Ma Y, McLaughlin HJ, Pan HQ, Sarhan OH, Toth S, Wang Z, Zhang G, Heisterkamp N, Groffen J, Roe BA (1995) Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. *Genomics* 27:67–82
- Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Anal Biochem* 162:156–159
- Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON (1987) Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. *Science* 235:85–88
- Corral J, Forster A, Thompson S, Lampert F, Kaneko Y, Slater R, Kroes WG, van der Schoot CE, Ludwig WD, Karpas A, Pocock C, Cotter F, Rabbits TH (1993) Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. *Proc Natl Acad Sci U S A* 90:8538–8542
- Crist W, Carroll A, Shuster J, Jackson J, Head D, Borowitz M, Behm F, Link M, Steuber P, Ragab A, Hirt A, Brock B, Land VJ, Pullen DJ (1990) Philadelphia chromosome-positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study. *Blood* 76:489–494
- Crist WM, Carroll AJ, Shuster JJ, Behm FG, Whitehead M, Vietti TJ, Look AT, Mahoney D, Ragab A, Pullen DJ, Land VJ (1990) Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a Pediatric Oncology Group study. *Blood* 76:117–122
- Cross NC, Melo JV, Feng L, Goldman JM (1994) An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in hematological disorders. *Leukemia* 8:186–189
- Dhut S, Gibbons B, Chaplin T, Young BD (1991) Establishment of a lymphoblastoid cell line, SD-1, expressing the p190 bcr-abl chimaeric protein. *Leukemia* 5:49–55

12. Drexler HG, Dirks W, MacLeod RAF, Quentmeier H, Steube K, Uphoff CC (1997) Human and animal cell lines. DSMZ Catalogue
13. Fletcher JA, Lynch EA, Kimball VM, Donnelly M, Tantravahi R, Sallan SE (1991) Translocation (9;22) is associated with extremely poor prognosis in intensively treated children with acute lymphoblastic leukemia. *Blood* 77:435–439
14. Golub TR, McLean T, Stegmaier K, Carroll M, Tomasson M, Gilliland DG (1996) The TEL gene and human leukemia. *Biochim Biophys Acta Rev Cancer* 1288:M7–M10
15. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, Croce CM, Canaani E (1992) The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to *Drosophila trithorax*, to the AF-4 gene. *Cell* 71:701–708
16. Gu Y, Alder H, Nakamura T, Schichman SA, Prasad R, Canaani O, Saito H, Croce CM, Canaani E (1994) Sequence analysis of the breakpoint cluster region in the ALL-1 gene involved in acute leukemia. *Cancer Res* 54:2326–2330
17. Harbott J (1998) Cytogenetics in childhood acute lymphoblastic leukemia. *Rev Clin Exp Hematol* 5:25–43
18. Harbott J, Viehmann S, Borkhardt A, Henze G, Lampert F (1997) Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. *Blood* 90:4933–4937
19. Hawkins JM, Secker WL (1991) Evaluation of cytogenetic samples and pertinent technical variables in adult acute lymphocytic leukemia. *Cancer Genet Cytogenet* 52:79–84
20. Heisterkamp N, Jenkins R, Thibodeau S, Testa JR, Weinberg K, Groffen J (1989) The bcr gene in Philadelphia chromosome positive acute lymphoblastic leukemia. *Blood* 73:1307–1311
21. Hilden JM, Chen CS, Moore R, Frestedt J, Kersey JH (1993) Heterogeneity in MLL/AF-4 fusion messenger RNA detected by the polymerase chain reaction in t(4;11) acute leukemia. *Cancer Res* 53:3853–3856
22. Israeli S, Lion T (1991) Multiprimer-PCR for screening of genetic abnormalities in acute lymphoblastic leukaemia. *Br J Haematol* 79:645–647
23. Israeli S, Janssen JW, Haas OA, Harbott J, Brok Simoni F, Walther JU, Kovar H, Henn T, Ludwig WD, Reiter A, Rechavi G, Bartram CR, Gadner H, Lion T (1993) Detection and clinical relevance of genetic abnormalities in pediatric acute lymphoblastic leukemia: a comparison between cytogenetic and polymerase chain reaction analyses. *Leukemia* 7:671–678
24. Kurzrock R, Guterman JU, Talpaz M (1988) The molecular genetics of Philadelphia chromosome-positive leukemias. *N Engl J Med* 319:990–998
25. Liang DC, Chou TB, Chen JS, Shurtliff SA, Rubnitz JE, Downing JR, Pui CH, Shih LY (1996) High incidence of TEL/AML1 fusion resulting from a cryptic t(12; 21) in childhood B-lineage acute lymphoblastic leukemia in Taiwan. *Leukemia* 10:991–993
26. Martinez CJ (1997) Molecular cytogenetics of childhood hematological malignancies. *Leukemia* 11:1999–2021
27. McLean TW, Ringold S, Neuberg D, Stegmaier K, Tantravahi R, Ritz J, Koeffler HP, Takeuchi S, Janssen JWG, Seriu T, Bartram CR, Sallan SE, Gilliland DG, Golub TR (1996) TEL/AML1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. *Blood* 88:4252–4258
28. Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T, Yokoyama K, Soeda E, Ohki M (1995) Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. *Nucleic Acids Res* 23:2762–2769
29. Pui CH (1995) Childhood leukemias. *N Engl J Med* 332:1618–1630
30. Pui CH, Frankel LS, Carroll AJ, Raimondi SC, Shuster JJ, Head DR, Crist WM, Land VJ, Pullen DJ, Steuber CP, Behm FG, Borowitz M (1991) Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases [see comments]. *Blood* 77:440–447
31. Raimondi SC (1993) Current status of cytogenetic research in childhood acute lymphoblastic leukemia. *Blood* 81:2237–2251
32. Raimondi SC, Behm FG, Roberson PK, Williams DL, Pui CH, Crist WM, Look AT, Rivera GK (1990) Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). *J Clin Oncol* 8:1380–1388
33. Repp R, Borkhardt A, Haupt E, Kreuder J, Brettreich S, Hammermann J, Nishida K, Harbott J, Lampert F (1995) Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescence-based automatic DNA-fragment analysis. *Leukemia* 9:210–215
34. Romana SP, Le Coniat M, Berger R (1994) t(12;21): a new recurrent translocation in acute lymphoblastic leukemia. *Genes Chromosomes Cancer* 9:186–191
35. Romana SP, Mauchauffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R, Bernard OA (1995) The t(12;21) of acute lymphoblastic leukemia results in a TEL-AML1 gene fusion. *Blood* 85:3662–3670
36. Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffe M, Jonveaux P, Macintyre EA, Berger R, Bernard OA (1995) High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. *Blood* 86:4263–4269
37. Rubin CM, Le BM, Mick R, Bitter MA, Nachman J, Rudinsky R, Appel HJ, Morgan E, Suarez CR, Schumacher HR, Subramanian U, Rowley J (1991) Impact of chromosomal translocations on prognosis in childhood acute lymphoblastic leukemia. *J Clin Oncol* 9:2183–2192
38. Schlieben S, Borkhardt A, Reinisch I, Ritterbach J, Janssen JWG, Ratei R, Schrappe M, Repp R, Zimmermann M, Kabisch H, Janka-Schaub G, Bartram CR, Ludwig WD, Riehm H, Lampert F, Harbott J (1996) Incidence and clinical outcome of children with BCR/ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-BFM-90 and CoALL-05–92. *Leukemia* 10:957–963
39. Secker WL, Berger R, Fenaux P, Lai JL, Nelken B, Garson M, Michael PM, Hagemeyer A, Harrison CJ, Kaneko Y, Rubin CM (1992) Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia. *Leukemia* 6:363–369
40. Seeger K, Adams HP, Buchwald D, Beyermann B, Kremens B, Niemeyer C, Ritter J, Schwabe D, Harms D, Schrappe M, Henze G (1998) TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Münster Study Group. *Blood* 91:1716–1722
41. Shurtliff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML, Chan GC, Pui CH, Grosveld G, Downing JR (1995) TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. *Leukemia* 9:1985–1989
42. Stong RC, Korsmeyer SJ, Parkin JL, Arthur DC, Kersey JH (1985) Human acute leukemia cell line with the t(4;11) chromosomal rearrangement exhibits B lineage and monocytic characteristics. *Blood* 65:21–31
43. Taube T, Seeger K, Beyermann B, Hanel C, Duda S, Linderkamp C, Henze G (1997) Multiplex PCR for simultaneous detection of the most frequent T-cell receptor δ gene rearrangements in childhood ALL. *Leukemia* 11:1978–1982
44. Uphoff CC, MacLeod RAF, Denkmann SA, Golub TR, Borkhardt A, Janssen JWG, Drexler HG (1997) Occurrence of TEL-AML1 fusion resulting from (12;21) translocation in human early B-lineage leukemia cell lines. *Leukemia* 11:441–447
45. Wlodarska I, Mecucci C, Baens M, Marynen P, Van den Berghe H (1996) ETV6 gene rearrangements in hematopoietic malignant disorders. *Leuk Lymphoma* 23:287–295