Final Exam
22C:2110/3110 Programming for Informatics
Friday, Dec. 19, 2014

45 points total

1. (9 points) Consider the functions:

def pla(n):
result = 0
if (@ % 2) ==0) or ((n % 5) == 0):
return result+1
return result

def pilb(n):
result = 0
if ((n % 2) == 0):
result = result+l
if ((n % 5) == 0):
result = result+l
return result

def plc(n):
if (n%2) == 0:
return 1
if (n¥%5) == 0:
return 1

def pld(n):
result = 0
if (@%2) == 0:
result = result + 1
elif (n%5) == 0:
result = result + 1
return result

For each item below, say whether or not the specified function returns the same value as pla on all integer
inputs. If you answer “no” give, provide an example input/output values that demonstrate the difference.

plb:

plc:

pld:

2. (9 points) Consider the following functions:

def p2a(n):
result = 0
for i in range(n+1):
result = result + i
return result

def p2b(n):
result = n
i=n-1
while (i >= 0):
result = result + i
i=41i-1
return result

def p2c(n):
if n ==
return O
else:
return p2c(n-1) + n

a. Clearly state, in one or two sentences, what p2a(n) computes, for any given integer n

b. Is p2b(n) == p2a(n) for every n? Carefully explain why or why not.

c. Is p2¢(n) == p2a(n) for every n? Carefully explain why or why not.

3. (9 points) We will call a list unimodal if it consists of a strictly decreasing sequence of numbers followed by
a strictly increasing sequence. Note: this is a different definition of unimodal than in the version discussed
on the last day of class.) Thus, any unimodal list will have at least three elements and no two consective
elements will have the same value.

Complete function unimodalMin below so that, when given a unimodal list as input, it returns a two-element
tuple containing the minimum and the index of the minimum.

For example, unimodalMax([102, 95, 94, -1, -4, 3]) should return (-4, 4).

def unimodalMin(L):
done = False

lo =0
hi = len(L) - 1
while (done == False):

midIndex = (lo + hi) // 2
midItem = L[midIndex]

done = True

elif L[midIndex-1] > midItem:

return __________ __ __ _ _ _ _ __ _ _ _________

4. (9 points) Complete the following class definition by adding code for the four methods: getAdjustedHome-
workTotal, getAdjustedHomeworkAverage, get AdjustedTotalPoints, and get Adjusted TotalPerentage

class StudentInfo:
def __init__(self, name, studentID):
self.name = name
self.studentID = studentID
self .homeworkScores = []
self.examScores = []

def addHomeworkScore(self, score):
self .homeworkScores.append(score)

def addExamScore(self, score):
self.examScores.append(score)

Return the sum of the homework scores, excluding the lowest score.

Assume there are always at least two homework scores.

(Note: if there are two or more equally lowest scores, only drop one of them.)
#

def getAdjustedHomeworkTotal(self):

Return a (float) number that’s the average of the scores used in the adjusted homework total
#
def getAdjustedHomeworkAverage (self):

Return the total of all exam scores
def getExamTotal(self):
return sum(self.examScores)

Return the total points scored (not including possible points for one dropped homework)
#
def getAdjustedTotalPoints(self):

Return the total possible points (not including possible points for one dropped homework)
Assume all homeworks are worth 10 points and all exams are worth 50 points
#
def getAdjustedTotalPossiblePoints(self):
return 10*(len(self.homeworkScores)-1) + 50*len(self.examScores)

Return an integer (not a float!) between O and 100 representing the

adjusted points scored as a percentage of the adjusted possible total, rounded
to the nearest whole number

E.g. for total points of 821 out of 1000 possible, the function would return 82
#

def getAdjustedTotalPercentage(self):

For example, given this test function:

def testStudentInfo():
s = StudentInfo("jim", 123)
.addHomeworkScore (5)
.addHomeworkScore (6)
.addHomeworkScore (8)
.addHomeworkScore (2)
.addExamScore (45)
.addExamScore (35)
print "Adjusted homework total:", s.getAdjustedHomeworkTotal()
print "Adjusted homework average:", s.getAdjustedHomeworkAverage ()
print "Exam total:", s.getExamTotal()
print "Adjusted total points:", s.getAdjustedTotalPoints(), \
" out of possible ", s.getAdjustedTotalPossiblePoints()
print "Adjusted total percentage:", s.getAdjustedTotalPercentage()

n n n n n n

testStudentInfo() produces:

>>> testStudentInfo()

Adjusted homework total: 19

Adjusted homework average 6.33333333333

Exam total 80

Adjusted total points: 99 out of possible 130
Adjusted total percentage: 76

5. (9 points) Conside the task, like that in Homework 12, of creating a long URL for use with a Google Maps
like API. The URL will specify a map center, zoom level, and a number of marker (pin) locations.

Complete the function generateMapURL(centerLatLon, zoomLevel, tweets) where the inputs are:

centerLatLon : a 2-element tuple giving the latitude and longitude of the desired center of the map

zoomLevel : an integer representing the desired map zoom level

tweets : a list of dictionaries containing Twitter tweet information. Fach dictionary might have many keys
but you only care about two of them, tweetText and coordinates. For a given tweet dictionary td, the

value td['tweetText’] is the text of the tweet and the value of td['coordinates’] is either “NoGeo” or a
2-element tuple, (lat, lon), giving the location of the tweet.

The output should be a URL of the form:
"http://mapapi.cs2110maps.com/map?center=clat,clon&zoom=zoomlevel&markers=1at0,lon0]...|latk,lonk"
where clat, clon are the latitude and longitude of the desired map center, zoomlevel is the desired zoomlevel,

and lati, loni in the markers list are lats/lons for those tweets that have coordinates associated with them.

For example, generateMapURL((43.0, -93.0), 12, [{’tweetText’ : "My first tweet", ’coordinates’:
(43.1, -93.01), ’id’ : 23}, { ’coordinates’: "NoGeo", ’tweetText’: "Wut?"}, {’tweetText’:
"Done with finals!", ’coordinates’: (43.2, -93.0)1}]) could return

"http://mapapi.cs2110maps.com/map?center=43.0,-93.0&zoom=12&markers=43.1,-93.01[43.2,-93.0"

(Note: assume tweet text consists of basic Ascii characters so no special encoding functions are needed.)

def generateMapURL(centerLatLon, zoomLevel, tweets):

I hope you have a great holiday break!!

