
© Anthony W. Smith, 2016
CSCI 114 Programming Fundamentals II

 Lab 6 Files

1

Lab 6 Files

Purpose
Purpose is to practice using file input and output, and array list of objects. Also, this
document tells you only what to do, you now have more responsibility to design how to
do it.

Problem description
You are given a text file called 'Students.txt' that contains information on many
students. Your program reads the file, creating many Student objects, all of which will
be stored into an array list of Student objects, in the Students class. The Tester class
controls everything, calling many Students class methods to produce lots of different
outputs. The program must write the output to an output file and to the Terminal
Window.

File and class specifications
Students.txt file format
Information for each student is stored in the file as 3 lines of text:

name
age
GPA

e.g. the following shows data for two students:

Name0
22
1.2
Name1
22
2.71

Student class
The Student class has instance variables and methods to represent one single student.

Your Student class must have exactly and only the following instance variables:

private String name;
private int age;
private double gpa;

© Anthony W. Smith, 2016
CSCI 114 Programming Fundamentals II

 Lab 6 Files

2

Design appropriate constructors and other methods for your Student class, including:

+ toString() – returns a String containing the 3 instance variables e.g.

Name0 22 1.2

Students class
Very importantly, the Students class is used to store and process many Student objects.
It will have an instance variable to store many Student objects. Methods intended to
process many Student objects belong in this Students class.

Your Students class must have exactly and only the following instance variable:

private ArrayList<Student> students;

students here is an array list of Student objects, in which all of the Student objects are
stored.

Students must have appropriate constructors and methods, including the following:

+ readFile() – opens the data file, reads the data, creates Student objects, and adds
them to the students array list

+ toString() – returns a String containing a line of information for each Student in
the students array list. Will call Student's toString() to do this. For example:

Name0 22 1.2
Name1 22 2.71

Many other methods for processing a Students object. Most of the code you write will
be in this class.

Reading the data file
Your program will use the Scanner class to read from the data file, as demonstrated
during the Week 13. Files lecture.

Writing the output file
Your program must use the PrintWriter class to save all its output to the output.txt
file, as demonstrated during the Week 13. Files lecture. It will also send the same output
to the BlueJ Terminal Window, as usual.

© Anthony W. Smith, 2016
CSCI 114 Programming Fundamentals II

 Lab 6 Files

3

Tester class
The Tester class controls everything. Tester does not have any instance variables.
You have to write the Tester class.

Tester contains only a main() method, which first creates a single Students object (and
a PrintWriter object). The Students object then calls a separate Students method to
do each of the 6 different tasks below. You must design appropriate parameters and
return values, in particular so that all program output to Terminal Window and
output.txt is done from main(). In pseudocode:

+ main()
create an empty Students object
create a new PrintWriter object to create the ‘output.txt’ output file

read data file into Students
print all Student objects from Students
print the Student with the best GPA
calculate and print the average GPA
print the youngest Student who has a GPA below average
print just the names of all the students

Hints
 the Students.txt data file is available at Blackboard, Course Documents, Week 14

folder, Example programs. You must copy it into your Lab 6 BlueJ project folder

 you will need to add throws IOException to your Tester class main() method

header and the Students class readFile() method header. For example, in Tester:

public static void main(String args[]) throws IOException

This prevents a file handling syntax error: “unreported exception
java.io.IOException; must be caught or declared to be thrown”

 (you may want to review array lists from Blackboard, Course documents, Week 7
Arrays and array lists)

 it is important in this lab always to keep in mind that each element in the Students

class array list is itself an entire Student object...

 it is essential that you draw pictures of the objects involved in your program, so that

you are always aware of the data type you are working with

© Anthony W. Smith, 2016
CSCI 114 Programming Fundamentals II

 Lab 6 Files

4

 the 6 different actions above will each be implemented as a separate public Students
method, called from main() by the Students object, using appropriate parameters
and return types

 (by the way, there is no inheritance in this lab)

Syntax for processing an array list of objects
 the syntax for processing an array list of Student objects is exactly as you would

expect. For example, here’s a method that prints all the Students with GPAs above
the average

 first, the method call in main(). Since we must do all printing from main(), we

design aboveAverage() to return a new Students object:

System.out.printf("\nGPAs above the average of %.2f\n", gpa);
ot.printf("\nGPAs above the average of %.2f\n", gpa);
System.out.println(students.aboveAverage(gpa).toString());
ot.println(students.aboveAverage(gpa).toString());

 since aboveAverage() deals with many students, it would be part of the
Students class. It creates a new Students object in which to return many
Student objects:

 see that it calls a method getGPA(), that must directly return the GPA of a
student. So getGPA() would be part of the Student class:

public double getGPA()
{
 return gpa;
}

 it also calls a method add(), that takes a Student object and adds it to a

Students object. So add() would be part of the Students class:

public Students aboveAverage(double avgGPA)
{
 Students aboveAverage = new Students();

 for (int i = 0; i < students.size(); ++i) {
 if (students.get(i).getGPA() > avgGPA)
 aboveAverage.add(students.get(i));
 }
 return aboveAverage;
}

syntax to call a method on a Student
object in the students array list

© Anthony W. Smith, 2016
CSCI 114 Programming Fundamentals II

 Lab 6 Files

5

public void add(Student s)
{
 students.add(s);
}

Designing method return types
 the natural unit of an object-oriented program is an object. So methods returning

results tend to return entire objects. Some hypothetical examples to illustrate this:

 e.g. bestStudent() returns a single student, so would return a Student object.

Method header would be something like:

public Student bestStudent(~~~~~~)

 e.g. studentsAboveAverage() returns many students, so would return a

Students object. Method header would be something like:

public Students studentsAboveAverage(~~~~~~)

 (of course methods can also return non-object data types if that is appropriate) e.g.

averageGPA() returns the average GPA, so method header would be something
like:

public double averageGPA()

Required
 your program must work for a file containing any number of students

 you are required this time to use PrintWriter to create your output.txt output file.

Cannot just save the Terminal Window output as usual

 your program must clearly label each part of the output e.g. "Student with best GPA

is:", "Average GPA is: ", "Youngest student below average GPA is:", etc

 use good programming practices regarding encapsulation of class instance variables
i.e. all must be declared private as shown above

 every method must have a clear, meaningful Javadoc comment

 automatically and routinely use all the other components of simplicity and clarity, as

listed in Blackboard, Course Information, “How labs are graded”

© Anthony W. Smith, 2016
CSCI 114 Programming Fundamentals II

 Lab 6 Files

6

Lab 6 submission
 deadline for this lab is 3 weeks, by end of Sunday 5/15

 zip your BlueJ project plus output.txt output file and email to me at

awsmith@palomar.edu

 you will lose points if you do not include a file named output.txt containing the
output of your program

 your email Subject line must say ‘CSCI 114 Lab 6’ followed by your full name, so

that it filters to the correct email folder for grading

 you will lose points if you format your email Subject incorrectly

 e.g. my email Subject would be:

CSCI 114 Lab 6 Anthony W. Smith

 this is a graded lab, so a reminder that you may not copy code from other people

 reminder that late labs will be penalized 2 points per week or part of week late

