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Applying Bayes'Theorem 
to clinical trials

by Tom Lecklider, Senior Technical Editor

Over the years, many writers have implied that 
statistics can provide almost any result that is con­
venient at the time. Of course, honest practitioners 
use statistics in an attempt to quantify the probability that a 

certain hypothesis is true or false or to better understand what 
the data actually means.

The field of statistics has been developed over more than 
200 years by famous mathematicians such as Laplace, Gauss, 
and Pascal and more recently Markov, Fisher, and Wiener. 
Pastor Thomas Bayes (1702-1761) appears to have had little 
influence on mathematics outside of statistics where Bayes’ 
Theorem has found wide application.

As described in the FDA’s 2010 Guidance... fo r  the Use o f 
Bayesian Statistics in Medical Device Clinical Trials, “Bayes­
ian statistics is an approach for learning from evidence as it 
accumulates. In clinical trials, traditional (frequentist) statistical 
methods may use information from previous studies only at the 
design stage. Then, at the data analysis stage, the information 
from these studies is considered as a complement to, but not 
part of, the formal analysis. In contrast, the Bayesian approach 
uses Bayes’ Theorem to formally combine prior information 
with current information on a quantity of interest. The Bayesian 
idea is to consider the prior information and the trial results as 
part of a continual data stream, in which inferences are being 
updated each time new data becomes available.”1

B a y e s 'T h e o re m
As explained in the FDA’s Guidance document, prior information 
about a topic that you wish to investigate in more detail can be 
combined with new data using Bayes’ Theorem. Symbolically, 

p(AlB) = p(BIA) x p(A)/p(B)
where: p(AIB) = the posterior probability of A occurring 

given condition B
p(BIA) = the likelihood probability of condition B 

being true when A occurs
p(A) = the  p r io r  p ro b a b il i ty  o f o u tco m e  A 

occurring regardless of condition B 
p(B) = the evidence probability  of condition B 

being true regardless of outcome A 
Reference 2 discusses the application of Bayes’ Theorem to 

a horse-racing example. In the past, a horse won five out of 12 
races, but it had rained heavily before three of the five wins. 
One race was lost when it had rained. What is the probability 
that the horse will win the next race if it rains?

We want to know p(winning I it has rained). We know the 
following:

p(it has rained I winning) = 3/5 = 0.600 
p(winning) = 5/12 = 0.417 
p(raining before a race) = 4/12 = 0.333
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From Bayes Theorem, p(winning I it has rained) = 0.600 x 
0.417/0.333 = 0.75. Taking into account the horse’s prefer­
ence for a wet track significantly changes its odds of winning 
compared to 0.417 when rain is not considered.2

Typically, actual situations are not this simple but instead 
involve many variables and dependencies. Also, the discrete 
probabilities of the horse-racing example are replaced by 
probability density functions (PDFs). Common PDFs, such 
as the familiar bell curve of the normal distribution, show 
the likelihood that a variable will have a certain value. Often, 
researchers need to know that a quantity is larger or smaller 
than some limit or that it falls within a certain range, which 
requires integrating part of the area under the PDF curve.

Dr. John Kruschke, Department of Psychological and Brain 
Sciences, Indiana University, described a learning experiment 
in which a person is shown single words and combinations of 
two words on a computer screen. The object is to learn which 
keys to press in response to seeing a word or combination of 
words. The lengths of all the response times (RT) between a 
new word or combination appearing and the correct key being 
pressed comprise the test data.

All together, there were seven unique words or combinations, 
called cues, randomly presented to learners often enough that 
each cue repeated many times. There were 64 learners involved 
in the study. The objectives were to “...estimate the overall 
baseline RT, the deflection away from the baseline due to each 
test item, and the deflection away from the baseline due to each 
subject.”3

This example is not nearly as large or complex as many 
medical trials but still was addressed through the Bayesian 
inference using the Gibbs sampling (BUGS) computer program 
initially developed by the Medical Research Council Biosta­
tistics Unit in Cambridge, U.K. A great deal of information is
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contained in the posterior distribution, and Kruschke made it 
clear that . .the posterior is a joint probability distribution in 
a high-dimensional parameter space.... [Example PDFs are]... 
only the marginal distribution^] of individual parameters, like 
pressing a flower between the pages of a heavy book. In other 
words, the posterior specifies the credible combinations of all 
the parameter values.”3

A joint probability distribution is the probability distribution 
of a multidimensional vector—each dimension representing a 
separate variable within a study. In general, the overall PDF 
cannot be expressed in a closed form and must be integrated 
using numerical methods.

Analysis
As discussed in Reference 4,“A major limitation towards more 
widespread implementation of Bayesian approaches is that ob­
taining the posterior distribution often requires the integration 
of high-dimensional functions. This can be computationally 
very difficult, but several approaches short of direct integration 
have been proposed....”

For many studies, each data point is independent. Flere, a 
data point is the value of a multidimensional vector—the set of 
answers that a certain respondent gave to a questionnaire. The 
set of responses given by all the respondents often is considered 
to be a Markov process, or more particularly a Markov chain 
because there is a finite number of discrete states that the vector 
assumes. In a Markov chain, the next value only depends on 
the current state—neither the preceding states nor their order 
is important. The successive states observed when repeatedly 
flipping a coin comprise a Markov chain.

Another concept that is key to addressing practical appli­
cations of Bayes’ Theorem is Monte Carlo integration. The 
Monte Carlo approach can be thought of as a massively parallel 
set of random trials that is evaluated to estimate a solution. 
Stanislaw Ulam, who developed the technique when working 
at Los Alamos in 1946, wrote, “The question was what are 
the chances that a Canfield solitaire laid out with 52 cards will 
come out successfully? After spending a lot of time trying to 
estimate them by pure combinatorial calculations, I wondered 
whether a more practical method than ‘abstract thinking’ might 
not be to lay it out say one hundred times and simply observe 
and count the number of successful plays.”5

Monte Carlo integration approximates an integral ̂  h (x )d x

by first decomposing the integrand h(x) into the product 
of a separate function f(x) and a probability density p(x)

[ h ( x ) d x  = f f  ( x )  p ( x ) d x  . If this can be done, then the
J  a  J  a

second integral is equal to the expected value Ep(x)[f(x)] of 
f(x) over the interval [a,b]. For large n, this is approximated

where each xj is randomly drawn front the p(x) PDF.
Rather than flipping a single coin and recording successive 

outcomes, the Monte Carlo approach to determining that a 
coin has equal probability of coming up heads or tails is to 
simultaneously flip thousands of identical coins and then

compare the number of resulting heads and tails. A Monte 
Carlo simulation, on the other hand, would accumulate a 
very large number of random-value samples from the interval 
[0,1], assigning heads to values >0.5 and tails to those <0.5. 
The quantities of each would then be compared to determine 
bias.

Reference 6 combines the two ideas: “Markov chain Monte 
Carlo (MCMC) is a collection of sampling methods that is 
based on following random walks on Markov chains.” Markov 
chains for which there is a finite probability of transitioning 
from any state to any other are termed ergodic. The PDF 
describing the frequency with which the various states of 
an ergodic chain occur approaches a stationary distribution 
after a sufficiently large number of transitions—the so-called 
burn-in time. The transitions from one state to the next form 
a multidimensional path—a random walk.

Gibbs sampling performs a special kind of random walk 
in which, “...at each iteration, the value along a randomly 
selected dimension is updated according to the conditional 
distribution.” Bayes’ posterior joint probability distribution 
is defined as the product of conditional distributions, and 
Gibbs sampling is said to work well in this case.6

Review
The initial design of a medical survey largely influences the 
usefulness of the results. Bayes’ Theorem allows results from 
a previous study to be combined with the current study, and 
it also provides the opportunity to monitor data as the study 
progresses. However, correctly analyzing the complex joint 
probability distributions characteristic of this approach requires 
a statistician trained in the use of Bayes’ Theorem.

As stated in the FDA’s Guidance document, “Different 
choices of prior information or different choices of model can 
produce different decisions. As a result, in the regulatory setting, 
the design of a Bayesian clinical trial involves prespecification 
of and agreement on both the prior information and the model. 
Since reaching this agreement is often an iterative process, we 
recommend you meet with the FDA early to obtain agreement 
upon the basic aspects of the Bayesian trial design.

“A change in the prior information or the model at a later 
stage of the trial may imperil the scientific validity of the trial 
results. For this reason, formal agreement meetings may be 
appropriate when using a Bayesian approach.”1
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