MEDICAL TEST

Applying Bayes' Theorem
to clinical frials

by Tom Lecklider, Senior Technical Editor

ver the years, many writers have implied that

statistics can provide almost any result that is con-

venient at the time. Of course, honest practitioners
use statistics in an attempt to quantify the probability that a
certain hypothesis is true or false or to better understand what
the data actually means.

The field of statistics has been developed over more than
200 years by famous mathematicians such as Laplace, Gauss,
and Pascal and more recently Markov, Fisher, and Wiener.
Pastor Thomas Bayes (1702-1761) appears to have had little
influence on mathematics outside of statistics where Bayes’
Theorem has found wide application.

As described in the FDA’s 2010 Guidance... for the Use of
Bayesian Statistics in Medical Device Clinical Trials, “Bayes-
ian statistics is an approach for learning from evidence as it
accumulates. In clinical trials, traditional (frequentist) statistical
methods may use information from previous studies only at the
design stage. Then, at the data analysis stage, the information
from these studies is considered as a complement to, but not
part of, the formal analysis. In contrast, the Bayesian approach
uses Bayes’ Theorem to formally combine prior information
with current information on a quantity of interest. The Bayesian
idea is to consider the prior information and the trial results as
part of a continual data stream, in which inferences are being
updated each time new data becomes available.”!

Bayes'Theorem
As explained in the FDA’s Guidance document, prior information
about a topic that you wish to investigate in more detail can be
combined with new data using Bayes’ Theorem. Symbolically,
p(AIB) = p(BIA) x p(A)/p(B)
where: p(AIB) = the posterior probability of A occurring
given condition B
p(BIA) = the likelihood probability of condition B
being true when A occurs
p(A) = the prior probability of outcome A
occurring regardless of condition B
p(B) = the evidence probability of condition B
being true regardless of outcome A
Reference 2 discusses the application of Bayes’ Theorem to
a horse-racing example. In the past, a horse won five out of 12
races, but it had rained heavily before three of the five wins.
One race was lost when it had rained. What is the probability
that the horse will win the next race if it rains?
We want to know p(winning | it has rained). We know the
following:
p(it has rained | winning) = 3/5 = 0.600
p(winning) = 5/12 = 0.417
p(raining before a race) = 4/12 = 0.333
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From Bayes Theorem, p(winning | it has rained) = 0.600 x
0.417/0.333 = 0.75. Taking into account the horse’s prefer-
ence for a wet track significantly changes its odds of winning
compared to 0.417 when rain is not considered.

Typically, actual situations are not this simple but instead
involve many variables and dependencies. Also, the discrete
probabilities of the horse-racing example are replaced by
probability density functions (PDFs). Common PDFs, such
as the familiar bell curve of the normal distribution, show
the likelihood that a variable will have a certain value. Often,
researchers need to know that a quantity is larger or smaller
than some limit or that it falls within a certain range, which
requires integrating part of the area under the PDF curve.

Dr. John Kruschke, Department of Psychological and Brain
Sciences, Indiana University, described a learning experiment
in which a person is shown single words and combinations of
two words on a computer screen. The object is to learn which
keys to press in response to seeing a word or combination of
words. The lengths of all the response times (RT) between a
new word or combination appearing and the correct key being
pressed comprise the test data.

All together, there were seven unique words or combinations,
called cues, randomly presented to learners often enough that
each cue repeated many times. There were 64 learners involved
in the study. The objectives were to “...estimate the overall
baseline RT, the deflection away from the baseline due to each
test item, and the deflection away from the baseline due to each
subject.”3

This example is not nearly as large or complex as many
medical trials but still was addressed through the Bayesian
inference using the Gibbs sampling (BUGS) computer program
initially developed by the Medical Research Council Biosta-
tistics Unit in Cambridge, U.K. A great deal of information is
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contained in the posterior distribution, and Kruschke made it
clear that “...the posterior is a joint probability distribution in
ahigh-dimensional parameter space.... [Example PDFs are]. ..
only the marginal distribution[s] of individual parameters, like
pressing a flower between the pages of a heavy book. In other
words, the posterior specifies the credible combinations of all
the parameter values.”

A joint probability distribution is the probability distribution
of a multidimensional vector—each dimension representing a
separate variable within a study. In general, the overall PDF
cannot be expressed in a closed form and must be integrated
using numerical methods.

Analysis

As discussed in Reference 4,“A major limitation towards more
widespread implementation of Bayesian approaches is that ob-
taining the posterior distribution often requires the integration
of high-dimensional functions. This can be computationally
very difficult, but several approaches short of direct integration
have been proposed....”

For many studies, each data point is independent. Here, a
data point is the value of a multidimensional vector—the set of
answers that a certain respondent gave to a questionnaire. The
setof responses given by all the respondents often is considered
to be a Markov process, or more particularly a Markov chain
because there is a finite number of discrete states that the vector
assumes. In a Markov chain, the next value only depends on
the current state—neither the preceding states nor their order
is important. The successive states observed when repeatedly
flipping a coin comprise a Markov chain.

Another concept that is key to addressing practical appli-
cations of Bayes’ Theorem is Monte Carlo integration. The
Monte Carlo approach can be thought of as a massively parallel
set of random trials that is evaluated to estimate a solution.
Stanislaw Ulam, who developed the technique when working
at Los Alamos in 1946, wrote, “The question was what are
the chances that a Canfield solitaire laid out with 52 cards will
come out successfully? After spending a lot of time trying to
estimate them by pure combinatorial calculations, I wondered
whether a more practical method than ‘abstract thinking’ might
not be to lay it out say one hundred times and simply observe
and count the number of successful plays.”

Monte Carlo integration approximates an integral I h(x)dx

by first decomposing the integrand h(x) into the product
of a separate function f(x) and a probability density p(x)

J-bh(x)dx = Ibf(x)p(x)dx . If this can be done, then the

second integral is equal to the expected value Ep(x)[f(x)] of
f(x) over the interval [a,b]. For Iarge n, this is approximated

by
E.. lf ()= Z,lf()

where each x; is randomly drawn from the p(x) PDF.

Rather than flipping a single coin and recording successive
outcomes, the Monte Carlo approach to determining that a
coin has equal probability of coming up heads or tails is to
simultaneously flip thousands of identical coins and then
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compare the number of resulting heads and tails. A Monte
Carlo simulation, on the other hand, would accumulate a
very large number of random-value samples from the interval
[0,1], assigning heads to values >0.5 and tails to those <0.5.
The quantities of each would then be compared to determine
bias.

Reference 6 combines the two ideas: “Markov chain Monte
Carlo (MCMQC) is a collection of sampling methods that is
based on following random walks on Markov chains.” Markov
chains for which there is a finite probability of transitioning
from any state to any other are termed ergodic. The PDF
describing the frequency with which the various states of
an ergodic chain occur approaches a stationary distribution
after a sufficiently large number of transitions—the so-called
burn-in time. The transitions from one state to the next form
a multidimensional path—a random walk.

Gibbs sampling performs a special kind of random walk
in which, “...at each iteration, the value along a randomly
selected dimension is updated according to the conditional
distribution.” Bayes’ posterior joint probability distribution
is defined as the product of conditional distributions, and
Gibbs sampling is said to work well in this case.6

Review

The initial design of a medical survey largely influences the
usefulness of the results. Bayes’ Theorem allows results from
a previous study to be combined with the current study, and
it also provides the opportunity to monitor data as the study
progresses. However, correctly analyzing the complex joint
probability distributions characteristic of this approach requires
a statistician trained in the use of Bayes’ Theorem.

As stated in the FDA’s Guidance document, “Different
choices of prior information or different choices of model can
produce different decisions. As aresult, in the regulatory setting,
the design of a Bayesian clinical trial involves prespecification
of and agreement on both the prior information and the model.
Since reaching this agreement is often an iterative process, we
recommend you meet with the FDA early to obtain agreement
upon the basic aspects of the Bayesian trial design.

“A change in the prior information or the model at a later
stage of the trial may imperil the scientific validity of the trial
results. For this reason, formal agreement meetings may be
appropriate when using a Bayesian approach.”!
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