CIS150 – Programming
The aim of this project is to implement a course grading system. We assume that the grades of all students are initially stored in a file in the following format:

[image: image1.png]806 </ students

(svies 9] (=0 (Soacng 1¥) (Lsts %) rede
F » » » > » » » » » » » >
) Ly 17 5}) 15 1§ 7 Tg Ty
2525201010

100 Lionel Messi 100 90 95.5 100 99
101 Cristiano Ronaldo 98.75 100 92 100 87
102 Neymar Santos 90 91.5 100 86 93

lege
125 Didier Drogba 77 83 78.5 75 76
107 Pele Nasimento 100 100 100 100 100]

We assume there are 5 grades for student: midterm, final, quizzes, labs, project.

The first line of the file gives the weight (in the total grade) of each grade. In the example above, we have the following weights:

Midterm: 25%

Final: 25%

Quizzes: 20%

Labs: 10%

Project 10%

Each other line contains the information and grades of each student. For example, the second line states that student with Id 100, first name Lionel, last name Messi, received 100 in the midterm, 90 in the final, 95.5 in the quizzes, 100 in the labs, and 99 in the project.
Your program should be able to process any data stored in the file. It should also get the file name from the user. The number of students in the course is between 1 and 100.
Whenever the program is executed, it first reads the input file (file name to be entered by the user) to fill out a 1-dimensional array. The type of the array is the following structure:

struct student

{

int id;

string first;

string last;

float midterm;

float final;

float quizzes;

float labs;

float project;

float totalGrade;

string letterGrade;

};
The program also reads the weights of the different assessments (line 1 of the input file) and assigns the weights to program variables. It uses the values assigned to the weight variables to calculate/update the total grade of each student in the array.

Then, it uses the following grading scale to update the letter grade of each student in the array:
· >=93

A

· <93 and >=90

A-

· <90 and >=87

B+

· <87 and >=83

B

· <83 and >=80

B-

· <80 and >= 77

C+

· <77 and >= 73

C

· <73 and >= 70

C-

· <70 and >= 65

D+

· <65 and >= 60

D

· <60

E

Finally, the program displays the following menu:

------------------------ Menu ---------------------------

1. Display Grades for a Given Student
2. Average Total Grade in Course
3. Maximum Total Grade in Course

4. Minimum Total Grade in Course

5. Save Total and Letter Grades in File
6. Quit

--- ---
Please Enter Your Choice (1-8):

Option 1 asks the user of a student ID (an integer) and looks for the student in the array. If the student does not exist, display an error message. Otherwise, display the student first name, last name, and all hos/her grades (including total and letter grades).
Option 2 uses the array to calculate and display the average total grade.

Option 3 uses the array to calculate and display the maximum total grade.

Option 4 uses the array to calculate and display the minimum total grade.

Option 5 first asks the user for the name of the output file. Then, it writes the student id, first name, last name, total grade, letter grade of each student from the array to the output file.
The program should define and use the following functions. Other functions may be added if needed:

// asks the user for a file name and returns the file name
string getFileName ()
{
// To be completed
}

// get the weight from the first line of the file

void getWeights (ifstream& ins, int& weightMidterm, int& weightFinal, int& weightQuizzes, int& weightLabs, int& weightProject)

{

// To be completed

}

// fill out array using data from the remaining lines of the file

void fillArrayFromFile (ifstream& ins, student studArray[],int& numberOfStudents, int weightMidterm, int weightFinal, int weightQuizzes, int weightLabs, int weightProject)

{

// To be completed

}

// calculate and update the total grade of student at
// a given index in the array
// this function is called by fillArrayFromFile
void updateTotalGrade (student studArray[], int index, int weightMidterm, int weightFinal, int weightQuizzes, int weightLabs, int weightProject)
{
// To be completed

}

// calculate and update the letter grade of student at
// a given index in the array

// this function is called by fillArrayFromFile

void updateLetterGrade (student studArray[], int index)

{

// To be completed

}

// calculate the average total grade in the array

float calculateAverageTotalGrade (student studArray[],int numberOfStudents)

{

// To be completed

}

// calculate the maximum total grade in the array

float calculateMaximumTotalGrade (student studArray[],int numberOfStudents)

{

// To be completed

}

// calculate the minimum total grade in the array

float calculateMinimumTotalGrade (student studArray[],int numberOfStudents)

{

// To be completed

}

// saves the student id, first name, last name, total grade,
// letter grade of each student from the array to the
// output file.

void saveResultsToFile (ofstream& ons, student studArray[],int numberOfStudents)

{
// To be completed

}

Component 1: Software Documentation

Precede each function with the following standard information:
// Author: ….

// Creation Date: …

// Last Modification Date: …

// Purpose: …

Also, Include a comment at the beginning of the program that includes the following information:

// Author: ….

// Creation Date: …

// Last Modification Date: …

// Purpose: …

Component 2: Screenshots
Create a number of screen shots demonstrating the running results of your program. There should be one screenshot per option in the menu.
Component 3: Comments
Make sure you properly comment and organize your code (e.g., indentation, choice of identifiers, etc.)
Submission of Your Work
You need to prepare a SINGLE MS word document that contains your answers to component 2 as well as your source code (by copy-and-paste).
PAGE
5

