
	

1	
	

50:198:211	C	and	Systems	Programming	 Assignment	4	

Assignment	4	
Due	Wednesday,	Nov.	11,	2015	

As	in	Assignment	3,	you	are	to	write	a	C	program	that	extracts	all	words	from	a	piece	of	text.	
This	time,	however,	you	are	to	store	the	words	in	a	hash	table	as	discussed	in	class	(see	Lecture	
Notes	8).	The	hash	table	should	use	chaining	to	resolve	collisions.	That	is,	words	that	hash	to	
the	same	“bucket”	should	be	stored	as	a	singly	linked	list	of	nodes	for	that	bucket.		

A	word	is	a	contiguous	sequence	of	characters	delimited	by	any	of	the	following	punctuation	
characters:	the	space	character,	period	(.),	comma	(,),	semicolon	(;),	colon	(:),	exclamation	
point	(!),	double	quote	("),	question	mark	(?),	and	newline	character	(\n).	Note	that	the	single	
quote	or	apostrophe	(')	is	not	considered	a	delimiter.	As	a	result,	the	following	are	considered	
single	words:		sheep's 'Tis you're Charles'

Two	words	are	considered	the	same	if	they	consist	of	exactly	the	same	sequence	of	characters,	
ignoring	case.	For	example,	“Boy”	and	“boy”	are	considered	the	same	word.	Words	should	be	
stored	in	lower-case	in	the	hash	table.	

Each	word	in	the	hash	table	should	correspond	to	a	unique	node	in	the	linked	list	for	the	bucket	
it	hashes	to.	Each	node	should	be	a	structure	consisting	of	the	following	members:	

• word:		a	string	representing	the	word	

• count:	the	number	of	times	that	word	appears	in	the	text	(ignoring	case).	That	is,	the	
first	time	word	is	encountered	in	the	text,	insert	it	into	the	hash	table	by	creating	a	new	
node	for	it	and	initialize	its	count	to	1.	For	each	subsequent	occurrence	of	word	in	the	
text,	simply	increment	its	node’s	count	by	1.	

• next:	a	pointer	to	the	next	node	in	the	list	(if	it	exists)	

A	sample	type	definition	for	a	node	is	shown	below	(which	is	used	in	the	subsequence):	

struct NodeType {
 char *word;
 int count;
 struct NodeType *next;
};
typedef struct NodeType Node;

The	size	(i.e.,	number	of	buckets)	of	the	hash	table,	say	htsize,	should	be	specified	as	a	
command-line	argument.	Make	htsize	a	global	variable.	Upon	reading	htsize,	allocate	from	
the	heap	a	hash	table	with	htsize	buckets,	each	initially	empty.	

Your	program	should	read	several	lines	of	text	stored	in	a	file	and	redirected	to	the	standard	
input	stdin.		It	should	then	parse	the	lines	into	individual	words	and	store	each	word	–	in	
lower-case	–	into	the	hash	table.	All	nodes	created	in	the	hash	table	should	be	allocated	from	
the	heap.	After	reading	the	entire	text,	print	all	the	[word,count]	tuples	stored	in	the	hash	
table	(see	below).	Finally,	destroy	the	hash	table	by	freeing	all	the	heap	space	allocated	to	it.	

	

2	
	

50:198:211	C	and	Systems	Programming	 Assignment	4	

As	an	example,	suppose	that	the	following	text	is	stored	in	the	file	input.txt.	

	

	

The	following	illustrates	what	your	program	should	output	for	the	above	text:	

	

	

Little Boy Blue,
Come blow your horn,
The sheep's in the meadow,
The cow's in the corn;
Where is that boy
Who looks after the sheep?
Under the haystack
Fast asleep.
Will you wake him?
Oh no, not I,
For if I do
He will surely cry.	

clamshell:~> ./hashtable < input.txt
ERROR: Usage: ./hashtable table_size
clamshell:~> ./hashtable 23 < input.txt
HT[0]: [under, 1] [oh, 1]
HT[1]: [that, 1]
HT[2]: [meadow, 1]
HT[3]: [cow's, 1] [for, 1] [if, 1]
HT[4]: [sheep's, 1] [where, 1] [no, 1] [not, 1]
HT[5]: [wake, 1] [cry, 1]
HT[6]:
HT[7]:
HT[8]: [surely, 1]
HT[9]: [blue, 1] [blow, 1] [looks, 1]
HT[10]:
HT[11]: [your, 1] [in, 2]
HT[12]:
HT[13]: [little, 1] [haystack, 1] [i, 2]
HT[14]: [will, 2]
HT[15]:
HT[16]: [horn, 1] [is, 1] [fast, 1] [asleep, 1]
HT[17]: [sheep, 1]
HT[18]: [you, 1]
HT[19]: [come, 1] [the, 6]
HT[20]: [corn, 1] [who, 1] [him, 1] [do, 1]
HT[21]: [after, 1]
HT[22]: [boy, 2] [he, 1]
clamshell:~>	

	

3	
	

50:198:211	C	and	Systems	Programming	 Assignment	4	

	

	

Let		Table	be	a	pointer	to	the	heap-allocated	hash	table	declared	as	follows:	

Node **Table;

Your	program	should	contain	at	least	the	following	functions:	

• unsigned int hash(const char *str):	compute	and	return	the	bucket	to	which	
the	string	str	hashes.	You	should	use	the	hash	function	discussed	in	class,	as	given	
above.

• Node **ht_create(void):	create	a	heap-allocated	hash	table	with	htsize	
buckets,	initially	empty,	and	return	a	pointer	to	it.	If	the	table	cannot	be	allocated,	issue	
an	error	message	on	stderr	and	terminate	program.

• int ht_insert(Node **Table, const char *word): insert	word	in	lower-
case	into	the	hash	table	Table.	If	word	is	not	in	Table,	insert	a	new	node	for	the	word	
in	the	bucket	to	which	it	hashes	to,	and	initialize	its	count	to	1.	The	node	should	be	
inserted	at	the	end	of	the	list	for	the	bucket.	If	word	is	already	in	Table,	increment	its	
count	by	1.	Return	1	on	success,	else	return	0.

• void ht_print(Node **Table):	print	all	words	stored	in	the	hash	table	Table.		
Specifically,	iterate	over	the	buckets	of	the	hash	table	and	print	the	[word,count]	
tuples	hashed	to	each	bucket.

• void ht_destroy(Node **Table):	destroy	the	hash	table	Table	by	freeing	all	the	
space	allocated	to	the	table.

Test	your	program	exhaustively.		Specifically,	it	should	detect	missing	command-line	
arguments,	extract	the	correct	tokens/words	from	the	input	text,	and	handle	empty	input.		
Check	the	return	values	of	library	function	calls	especially	malloc/calloc.	Use	the	assert
facility	where	appropriate	to	check	for	pre-	or	post-conditions.	Use	valgrind		to	check	for	
memory	leaks	and	correct	them.	

#define HASH_MULTIPLIER 65599
int htsize;
...
unsigned int hash(const char *str)
{
 int i;
 unsigned int h = 0U;

 for (i = 0; str[i] != '\0'; i++)
 h = h * HASH_MULTIPLIER + (unsigned char) str[i];

 return h % htsize;
}

	

4	
	

50:198:211	C	and	Systems	Programming	 Assignment	4	

	
Submitting	Your	Assignment	

• Upload	your	C	source	code	to	the	sakai	website.	Write	your	full	name	clearly	in	
comments	at	the	top	of	your	program.	

• Be	sure	to	properly	comment	your	code.	Points	will	be	taken	off	for	improperly	or	
insufficiently	commented	code.	

	
• Be	sure	your	code	has	no	compilation	errors.	Compiler	errors	will	prevent	your	

submission	from	being	graded.	

• 	This	assignment	is	due	by	11:55	pm	on	Wednesday,	e11,	2015.	Absolutely	no	late	
assignments	will	be	accepted.	

	

	

