50:198:211 C and Systems Programming Assignment 4

Assignment 4
Due Wednesday, Nov. 11, 2015

As in Assignment 3, you are to write a C program that extracts all words from a piece of text.
This time, however, you are to store the words in a hash table as discussed in class (see Lecture
Notes 8). The hash table should use chaining to resolve collisions. That is, words that hash to
the same “bucket” should be stored as a singly linked list of nodes for that bucket.

A word is a contiguous sequence of characters delimited by any of the following punctuation
characters: the space character, period (.), comma (,), semicolon (;), colon (:), exclamation
point ('), double quote ("), question mark (?), and newline character (\n). Note that the single
guote or apostrophe (') is not considered a delimiter. As a result, the following are considered
single words: sheep's 'Tis you're Charles'

Two words are considered the same if they consist of exactly the same sequence of characters,
ignoring case. For example, “Boy” and “boy” are considered the same word. Words should be
stored in lower-case in the hash table.

Each word in the hash table should correspond to a unique node in the linked list for the bucket
it hashes to. Each node should be a structure consisting of the following members:

* word: a string representing the word

* count: the number of times that word appears in the text (ignoring case). That is, the
first time word is encountered in the text, insert it into the hash table by creating a new
node for it and initialize its count to 1. For each subsequent occurrence of word in the
text, simply increment its node’s count by 1.

* next: a pointer to the next node in the list (if it exists)

A sample type definition for a node is shown below (which is used in the subsequence):

struct NodeType {
char *word;
int count;
struct NodeType *next;
}i
typedef struct NodeType Node;

The size (i.e., number of buckets) of the hash table, say htsize, should be specified as a
command-line argument. Make htsize a global variable. Upon reading htsize, allocate from
the heap a hash table with htsize buckets, each initially empty.

Your program should read several lines of text stored in a file and redirected to the standard
input stdin. It should then parse the lines into individual words and store each word —in

lower-case — into the hash table. All nodes created in the hash table should be allocated from
the heap. After reading the entire text, print all the [word, count] tuples stored in the hash
table (see below). Finally, destroy the hash table by freeing all the heap space allocated to it.

50:198:211 C and Systems Programming

As an example, suppose that the following text is stored in the file input. txt.

Assignment 4

Little Boy Blue,

Come blow your horn,

The sheep's in the meadow,
The cow's in the corn;
Where is that boy

Who looks after the sheep-?
Under the haystack

Fast asleep.

Will you wake him?

Oh no, not I,

For if I do

He will surely cry.

The following illustrates what your program should output for the above text:

clamshell:~> ./hashtable < input.txt

ERROR: Usage: ./hashtable table_size
clamshell:~> ./hashtable 23 < 1nput txt

HT[O0]: [under, 1] [oh, 1]

HT[1]: [that, 1]

HT[2]: [meadow, 1]

HT[3]: [cow's, 1] [for, 1] [if, 1]

HT[4]: [sheep's, 1] [where, 1] [no, 1] [not,
HT[5]: [wake, 1] [cry, 1]

HT[6] :

HT[7]:

HT[8]: [surely, 1]

HT[9]: [blue, 1] [blow, 1] [looks, 1]
HT[10]:

HT[11]: [your, 1] [in, 2]

HT[12]:

HT[13]: [little, 1] [haystack, 1] [i, 2]
HT[14]: [will, 2]

HT[15]:

HT[16]: [horn, 1] [is, 1] [fast, 1] [asleep,
HT[17]: [sheep, 1]

HT[18]: [you, 1]

HT[19]: [come, 1] [the, 6]

HT[20]: [corn, 1] [who, 1] [him, 1] [do, 1]
HT[21]: [after, 1]

HT[22] : [boy, 2] [he, 1]

clamshell:

1]

1]

50:198:211 C and Systems Programming Assignment 4

#define HASH MULTIPLIER 65599
int htsize;

unsigned int hash(const char *str)
{

int 1i;

unsigned int h = 0U;

for (i 0; str[i] !'= '\0'; i++)
h = h * HASH MULTIPLIER + (unsigned char) str[i];

return h $ htsize;

Let Table be a pointer to the heap-allocated hash table declared as follows:

Node **Table;
Your program should contain at least the following functions:

* unsigned int hash(const char *str): compute and return the bucket to which
the string stxr hashes. You should use the hash function discussed in class, as given
above.

* Node **ht_create(void) : create a heap-allocated hash table with htsize
buckets, initially empty, and return a pointer to it. If the table cannot be allocated, issue
an error message on stderr and terminate program.

* int ht_insert(Node **Table, const char *word): insertword inlower-
case into the hash table Table. If word is not in Table, insert a new node for the word
in the bucket to which it hashes to, and initialize its count to 1. The node should be
inserted at the end of the list for the bucket. If word is already in Table, increment its
count by 1. Return 1 on success, else return 0.

* void ht_print(Node **Table) : print all words stored in the hash table Table.
Specifically, iterate over the buckets of the hash table and print the [word, count]
tuples hashed to each bucket.

* void ht_destroy(Node **Table) : destroy the hash table Table by freeing all the
space allocated to the table.

Test your program exhaustively. Specifically, it should detect missing command-line
arguments, extract the correct tokens/words from the input text, and handle empty input.
Check the return values of library function calls especiallymalloc/calloc. Use the assert
facility where appropriate to check for pre- or post-conditions. Use valgrind to check for
memory leaks and correct them.

50:198:211 C and Systems Programming

Submitting Your Assignment

Upload your C source code to the sakai website. Write your full name clearly in
comments at the top of your program.

Be sure to properly comment your code. Points will be taken off for improperly or
insufficiently commented code.

Be sure your code has no compilation errors. Compiler errors will prevent your
submission from being graded.

This assignment is due by 11:55 pm on Wednesday, el1, 2015. Absolutely no late
assignments will be accepted.

Assignment 4

