
 1

CISC 640 Nova Southeastern University

OS Problem Set

Introduction

The following machine description will provide the basis for this assignment. You will
create a virtual machine/operating system for the machine described below that will accept
programs in the target machine language. The details for this assignment are presented
below following the machine description.

MICROPROGRAMMING/MACHINE DISCRIPTION

The following is a description of a machine called SIMMAC that contains the following:

512 32-bit words of memory (memory is word addressable).

Each Instruction consists of a 16-bit opcode and a 16-bit operand.

An ALU for performing mathematical operations.

Registers

ACC Accumulator; A 32-bit register involved in all arithmetic
operations. One of the operands in each arithmetic operation
must be in the Accumulator; the other must be in primary
storage.

PSIAR Primary Storage Instruction Address Register; This 16-bit

register points to the location in primary storage of the next
machine language instruction to be executed.

SAR Storage Address Register; This 16-bit register is involved in all

references to primary storage. It holds the address of the
location in primary storage being read from or written to.

SDR Storage Data Register; This 32-bit register is also involved in

all references to primary storage. It holds the data being
written to or receives the data being read from primary storage
at the location specified in the SAR.

TMPR Temporary Register; This 32-bit register is used to extract the

address portion (rightmost 16-bits) of the machine instruction in
the SDR so that it may be placed in the SAR. (No SDR to SAR

 2

transfer.)

CSIAR Control Storage Instruction Address Register; This register
points to the location of the next micro-instruction (in control
storage) to be executed.

IR Instruction Register; This register contains the current

instruction being executed.

MIR Micro-instruction Register; This register contains the current
micro-instruction being executed.

Register Transfers (REG is ACC, PSIAR, or TMPR):

SDR = REG
REG = SDR
SAR = REG

Primary Storage Operations:

READ Data from primary storage location named in the SAR is

placed in the SDR.

WRITE Data in the SDR is placed in primary storage location
named in the SAR.

Sequencing operations:

CSIAR = CSIAR + 1
CSIAR = decoded SDR
CSIAR = constant
SKIP = (add 2 to CSIAR if ACC=0; else add 1)

Operations involving the accumulator:

ACC = ACC + REG
ACC = ACC - REG
ACC = REG
REG = ACC
ACC = REG + 1

Instruction fetch:

 3

(00) SAR = PSIAR
(01) READ
(02) IR = SDR
(03) SDR = decoded IR (Operand)
(04) CSIAR = decoded IR (OP CODE)

ADD (Opcode 10):

(10) TMPR = ACC
(11) ACC = PSIAR + 1
(12) PSIAR = ACC
(13) ACC = TMPR
(14) TMPR = SDR
(15) SAR = TMPR
(16) READ
(17) TMPR = SDR
(18) ACC = ACC + TMPR
(19) CSIAR = 0

SUB (Opcode 20):

(20) TMPR = ACC
(21) ACC = PSIAR + 1
(22) PSIAR = ACC
(23) ACC = TMPR
(24) TMPR = SDR
(25) SAR = TMPR
(26) READ
(27) TMPR = SDR
(28) ACC = ACC - TMPR
(29) CSIAR = 0

LOAD (LDA, Opcode 30):

 (30) TMPR = ACC

(31) ACC = PSIAR + 1
(32) PSIAR = ACC
(33) ACC = TMPR
(34) TMPR = SDR
(35) SAR = TMPR
(36) READ
(37) ACC = SDR
(38) CSIAR = 0

STORE (Name STR, Opcode 40):

 4

(40) TMPR = ACC
(41) ACC = PSIAR + 1
(42) PSIAR = ACC
(43) ACC = TMPR
(44) TMPR = SDR
(45) SAR = TMPR
(46) SDR = ACC
(47) WRITE
(48) CSIAR = 0

BRANCH (Name BRH, Opcode 50):

(50) PSIAR = SDR
(51) CSIAR = 0

COND BRANCH (Name CBR, Opcode 60):

(60) SKIP
(61) CSIAR = 64
(62) PSIAR = SDR
(63) CSIAR = 0
(64) TMPR = ACC
(65) ACC = PSIAR + 1
(65) PSIAR = ACC
(66) ACC = TMPR
(67) CSIAR = 0

LOAD IMMEDIATE (LDI, Opcode 70):

 (70) TMPR = ACC

(71) ACC = PSIAR + 1
(72) PSIAR = ACC
(73) ACC = TMPR
(74) ACC = SDR
(75) CSIAR = 0

 5

SIMMAC Programming Language Description

Addition

Usage: ADD <address>

Where <address> holds the value to add to the accumulator.

Subtraction

Usage: SUB <address>

Where <address> holds the value to subtract from the accumulator.

Load

Usage: LDA <address>

Where <address> holds the value to load in to the accumulator.

Load Immediate

Usage: LDI number

Where number is the value to load in to the accumulator.

Store

Usage: STR <address>

Where <address> is the storage location for the contents of the
accumulator.

Branch

Usage: BRH <address>

Where <address> is the target of the absolute branch.

 6

Conditional Branch

Usage: CBR <address>

Where <address> is the target of an absolute branch if the
accumulator is zero.

Project Description

Design and implement a program to simulate the operation of the SIMMAC based on the
descriptions above.

Add a HALT instruction that dumps the contents of all registers and memory and then prints
an “End of Job” message.

Your project must implement multi-tasking in a single queue using a round-robin scheduling
discipline. You will implement process entities (jobs) that will allow your machine to run
several SIMMAC machine-language programs. In order to do this you will define a Process
Control Block (PCB) data structure that will be created for each job in your system. For this
assignment assume each SIMMAC instruction is equivalent to one clock cycle. Additionally
the time quantum value for round-robin scheduling is an integer multiple of a clock cycle.
The quantum value is to be set on the command line or prompted for during initialization.

You will define the notion of an interrupt handler that will process a time quantum for each
running job. On each job switch, you will print some state information such as which job will
be loaded and the current state of the job queues.

Your version of SIMMAC will then run multiple SIMMAC machine language programs
simultaneously. These programs will test the ability of your SIMMAC to handle multi-
tasking and scheduling. You must design your system such that all SIMMAC machine
programs are loaded from text files.

The SIMMAC must be designed to take command line arguments or to prompt for input
files in addition to the previously specified items. By this mechanism, all SIMMAC
language programs will be loaded. Since there is the LDI command, all data can be loaded
into SIMMAC memory using SIMMAC programming statements.

You must develop the following SIMMAC language programs to be run on your SIMMAC
machine:

1) Write three programs in the machine language of the SIMMAC that will total the

numbers stored in 20 different locations and place the result in a single location.

 7

2) Write a program in the machine language of the SIMMAC that will decrement the

value stored in location 201 (must be at least 100) by one until the result is zero.
Store the result in location 202.

3) Write a program in the machine language of the SIMMAC that will increment the

value stored in location 301 by two until the value has been increased by 200. Store
the result in location 302.

Each line of any SIMMAC program must have the following format:

Opcode Operand

You will be responsible for turning in the system design document, source code of your
version of SIMMAC (this code must be appropriately commented & readable), an
executable version of your SIMMAC, and the output generated from your SIMMAC
programs running on your version of SIMMAC. These items are to be placed in ZIP format
and submitted to the OS Problem Set Assignment in Blackboard Assignments.

