Engineering Mathematics One (ENGE501): Differential and Integral Calculus (MATH501)

Assignment Four

Due Monday 29 May 2017

Please ensure that all your working is clearly set out, all pages are stapled together, and that your name along with the course name, your lecturer name and your stream number (ex. ENGE501/10 etc. or MATH501/10) appears on the front page of the assignment. Please place completed assignments in the assignment box in WT level 1 by $4: 30 \mathrm{pm}$ on the due date.

Name	
Student ID	
Course name	
Paper Code/Stream	
Lecturer's Name	

Questions:

1. Evaluate each of the following definite integrals:

$$
\begin{array}{ll}
\int_{1}^{4} \frac{1}{\sqrt[3]{x}} d x & \int_{0}^{1} \frac{1}{7-2 t} d t \\
\int_{0}^{5}\left(2 e^{3 x}-4 \cos 2 x\right) d x & \int_{0}^{1} \frac{1}{(7-2 t)^{2}}
\end{array}
$$

2. Consider the square with vertices $(0,0),(0,1),(1,1)$ and $(1,0)$. The parabola $y=x^{2}$ splits the square into two unequal parts. Find the ratio of the smaller area to the larger one.
3. Evaluate each of the following indefinite integrals:

$$
\begin{array}{ll}
\int x\left(1+3 x^{5}\right) d x & \int x^{4}\left(1+3 x^{5}\right) d x \\
\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta & \int \frac{5 x^{2}-4 x+7}{\left(x^{2}+1\right)(2 x-1)} d x
\end{array}
$$

4. Evaluate the improper integral $\int_{0}^{1} \frac{5 x^{2}-4 x+7}{\left(x^{2}+1\right)(2 x-1)} d x$.
5. The force acting on a particle on the x-axis is

$$
F(x)=\frac{9800}{(x+500)^{2}}, \quad \text { when } \quad x \geq 0
$$

(a) Find the work required to move the particle from $x=0$ to $x=20$.
(b) By evaluating an improper integral, find the amount of work required to move the particle from $x=0$ to $x=\infty$
6. A heavy chain that weighs 8 kilograms/metre is initially hanging 20 metres down into a mine shaft. How much work is done in pulling up the chain to the top of the mine shaft? (You can take $g=9.81 \mathrm{~ms}^{-2}$).
7. The rate at which a pollutant is being dumped into a small stream at time t is given by $P_{0} e^{-k t}$, where P_{0} is the rate of the pollutant initially released into the stream. Suppose $P_{0}=1000$ and $k=0.06$. Find the total amount of the pollutant that will be released into the stream into the indefinite future.
8. When mixing a certain cocktail a barperson starts with a 5 litre solution of 10% alcohol. Into this solution the barperson mixes vodka (40% alcohol) at the rate of 2 litres/minute and pours into glasses at the rate of 3 litres/minute.
(a) Find a formula for the volume $V(t)$ of the mixture at time t minutes.
(b) Find a differential equation that tells the rate of change of the amount of alcohol $A(t)$ at time t minutes.
(c) Solve the differential equation and use the initial condition to find a formula for $A(t)$
9. When a charged capacitor is connected to earth, it discharges and the voltage V across it will decrease according to the equation:

$$
\frac{d V}{d t}=\frac{-V}{R C}
$$

where R (the resistance) and C (the capacitance) are constants. If the voltage V across a certain capacitor with capacitance $C=3 \times 10^{-6}$ farads drops from 10 volts to 1 volt in two seconds, determine the resistance R.

