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Inferential statistics allow researchers to make generalizations about how well results 
from samples match those for populations. Because samples are parts of populations, 
samples do not include all of the population information. Thus, no inference can be 
perfect because samples cannot represent completely their parent populations.

Imagine that a population is defined as all students enrolled in U.S. schools. Suppose 
researchers want to study how well students in that population enjoy school. A survey is 
developed, and researchers prepare to collect response data. Researchers estimate 
the target population consists of 3 million students. Because the population 
encompasses the entire United States, the team of researchers must include all 
geographic areas from Maine to Hawaii. However, actually collecting data for all U.S. 
students is too massive, so a sample is selected. Ideally, this sample would be 
randomly selected, which means that all U.S. students have the same chance of being 
selected. This makes the sample representative of the population. Essentially, this 
means that although the sample may represent only a small percentage of the students 
who comprise the complete population, that sample is assumed to reflect the 
characteristics of all U.S. students, including those not selected.

Parameters, Statistics, and Probability

A key component of inferential statistics is the degree to which error in estimating 
population values from sample values can be minimized. Probability theory, a branch of 
mathematics, plays a central role in inferential statistics. Probability theory serves as 
the backdrop for two important inferential statistics procedures. One is estimation, and 
the other is hypothesis testing. Estimation focuses on the degree to which sample 
values indicate true population values. For populations, computed values such as 
means, standard deviations, and variances are called parameters. For samples, those 
values are called statistics. Therefore, questions of estimation address the degree that 
statistics are equivalent to parameters.

Hypothesis testing pertains to investigators' attempts to answer specific research 
questions based on theoretical premises. For instance, when researchers want to 
determine the relationship between two variables—“Is there a relationship between 
Scholastic Aptitude Test scores and college grade point average?” or “Do males and 
females differ in their reading ability?”—hypothesis testing converts the research 
questions into predictive statements so that they can be subjected to empirical testing. 
Before we describe procedural steps used in hypothesis testing, let's take a very brief 
look at the history of probability theory in inferential statistics.

Probability Theory and Inferential Statistics

In his classic text titled Probability, Statistics, and Truth, Richard von Mises places the 
onset of probability theory in statistics in the early 1900s. Although properties of 
distributions, such as those of the normal curve, had been deduced mathematically by 
the early 1800s, there was limited research on the degree to which the normal curve 
reflected phenomena observed in the real world. In the early 20th century, the use of 
probability and the normal curve became important in fields such as agriculture, 
genetics, and medicine. At this time, R.A. Fisher, a British statistician, introduced the 
term likelihood. This term essentially means probability. Sample data could yield 
likelihoods of responses that are then compared to what is expected for the population 
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based on properties of mathematical distributions such as the normal curve.

Estimation and Hypothesis Testing Procedures

To illustrate the procedures of estimation and hypothesis testing in inferential statistics, 
consider the following situation. Suppose high school principals in one district want to 
answer the following questions about their students' performance on a high-stakes 
assessment:

Did our students perform the same as students nationwide with a mean of 120? 
Did our students perform differently from students attending a neighboring school 

district? 
Did our current students perform better than district students who took the test 4 

years ago? 

There are four basic inferential statistics steps needed to address any one of the 
questions. First, researchers must translate each research question into a pair of 
hypotheses. The first hypothesis, the null hypothesis, addresses the question as if the 
expected answer were “no.” The second hypothesis, the alternative or researcher's 
hypothesis, addresses the question as if the expected answer were “yes.”

In the second step, researchers choose the statistical technique that can help them 
address each specific question, along with an acceptable error rate with which they 
justify their conclusion. This error rate is referred to as the alpha level. The alpha level 
(symbolized as α-level) is the degree of Type I error. Type I error represents the 
probability that the null hypothesis will be rejected when the null hypothesis is true for the 
population. Usually, the alpha level for the social sciences is preset at .05. What this 
means is that for every 100 times the research question is addressed by a unique 
sample of data drawn randomly from the same population, there are 5 times when the 
results are purely attributable to chance.

In the third step of hypothesis testing, researchers actually compute the statistical 
values given their sample data. Computer programs such as the Statistical Package for 
the Social Sciences (SPSS) report estimates of the alpha level given the size of the 
statistical value computed as well as the sample size. Logically, the larger the sample 
size, the less error in inferring what the population value is based on the sample 
estimate. This should make sense because larger sample sizes mean that more 
information about the population is available to the researchers.

In the last step of hypothesis testing, researchers make a decision and state a 
conclusion. The decision is made in reference to the null hypothesis. Researchers 
either reject or fail to reject the null hypothesis. If they fail to reject the null hypothesis, it 
means the answer to the initial research question was “no.” If they reject the null 
hypothesis, then they are actually supporting the alternative hypothesis. This means that 
the answer to the research question is “yes.” The conclusion essentially restates the 
decision but in less statistical terms. It is usually in their conclusion that researchers 
also use the word significant. This means that if researchers rejected the null 
hypothesis, then they believe there is a strong likelihood that a result or relationship 
exists for the population as it does for the sample. We will now take a look at the four 
steps in answering the principals' research questions.

To answer Question 1, the researcher would set up the following hypotheses:
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Although the notation may be unfamiliar to some readers, the statistical symbols are 
easy to interpret. The symbol H0 stands for the null hypothesis, whereas the symbol Ha 
stands for the alternative hypothesis. For both hypotheses, the Greek letter μ (mu) is 
used because the high school principals are interested in an average or a mean. All 
hypotheses must be written to reference parameters, not statistics. When researchers 
state their conclusion, it is a generalization or inference from the sample results to what 
is expected for the population. Parameters are symbolized with letters from the Greek 
alphabet. Therefore, all null and alternative hypotheses should be written in notation 
form with letters like μ (for means), ρ (rho, for correlation coefficients), or β (beta, for 
regression coefficients).

In Step 2, the researchers state that a sample mean will be computed for the school 
district. The alpha level or Type I error level is set at .05. In Step 3, the computed 
sample mean value is compared to a critical value using the mathematical properties 
of the normal curve. The critical value depends on the sample size and the alpha level, 
and it is determined based on the theoretical properties of the normal curve. These 
properties have been derived from mathematical calculations using a formula from 
calculus. There are infinitely many critical values, just as there are infinitely many points 
that represent the score continuum under the normal curve. Mathematicians typically 
present critical values in appendix tables. Researchers look at their computed sample 
value and compare it to the critical value given their specific sample size and set alpha 
level.

In Step 4 of hypothesis testing, if the mean computed for the sample is larger than the 
critical value, then the researchers reject the null hypothesis. The conclusion would then 
be drawn that the school district's test score mean is not equal to the nationwide 
population with its mean of 120.

For Questions 2 and 3, the pairs of hypotheses would be presented in slightly different 
notational form. For Question 2, two sample means are compared. The first mean 
represents one school district, and the second mean represents the neighboring school 
district. Therefore, these two school districts provide two samples of data. We want to 
know if the two samples represent the same population or different ones. Therefore, the 
following pair of hypotheses is recorded:

 

The school principals are still interested in means, so μs are used to represent 
population parameters; however, the subscripts 1 and 2 beside the parameters 
indicate that there are two samples of means. As was done for the first research 
question, statisticians would proceed with Steps 2 through 4 of the basic set of 
hypothesis testing procedures. They would state which statistic should be used and 
then set the alpha level (i.e., Step 2). This time, a t-test value for independent samples 
would be computed to compare means (i.e., Step 3). The t-test value would be 
compared to a critical value, and finally, a decision and conclusion about the 
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significance of the results would be made (i.e., Step 4).

It is important to note that for Questions 1 and 2, the investigators used an equality sign 
when stating the hypotheses. This is because the hypotheses are considered 
nondirectional. This means that if we reject the null hypothesis for the first research 
question, then we are inferring only that the mean is different from 120, not whether it is 
below or above 120. Likewise, for Question 2, if we reject the null hypothesis, then we 
know only that the two sample means likely represent two different populations. We are 
not testing which population assumedly has the greater mean.

For Question 3, however, the principals are interested in the direction of the results. 
Thus, these directional hypotheses are written with inequality signs:

 

where Group 1 consists of the population from which scores from the school are drawn 
this year, and Group 2 consists of the population from which scores from this school 
were drawn 4 years ago. If the null hypothesis is rejected, then the researchers will infer 
that the current average for their school district is significantly greater than the average 
reported 4 years ago.

Controversies Surrounding Inferential Statistics

There are contemporary debates surrounding the use of inferential statistics. One 
debate pertains to statistical power. We mentioned that there is always error in 
inferential statistics, and Type I error is one example. Statisticians must simultaneously 
deal with Type II error, given every null hypothesis tested. Type II error occurs when 
researchers fail to reject the null hypothesis, and the null hypothesis was wrong. 
Statistical power is based on Type II error given the simple formula 1 − β, where β 
stands for the probability of Type II error. Thus, statistical power reflects the degree to 
which a decision is made without error.

Currently, many investigators think that stating the decision and conclusion is 
insufficient in inferential statistics because statistical power is not addressed directly. 
What these researchers know is that as sample size increases, there is a greater 
likelihood of rejecting the null hypothesis. However, the statistical value may be very 
small and meaningless given researchers' interests. With a large school district, the test 
mean might be only 122, and the null hypothesis presented for Question 1 could be 
rejected. Practically speaking, 122 and 120 are not that different when comparing 
standardized test scores in schools.

Therefore, many researchers also compute effect sizes. Effect sizes tell the direction 
and magnitude of differences between means in standard deviation units. As stated, as 
sample size increases, it is easier to reject a null hypothesis. Likewise, in some fields, 
researchers may not be able to sample large numbers of participants. Consequently, 
they may not be able to reject the null hypothesis, yet they may be able to compute large 
effect sizes. For that reason, many journal editors recommend reporting the level of 
statistical significance and the effect size.

• null hypothesis
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• critical value
• inferential statistics
• normal curve
• sampling
• hypothesis testing
• sample size

Jonna M. Kulikowich and Maeghan N. Edwards
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See also

• Hypothesis and Hypothesis Testing
• Significance Level
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