Homework 2

Textbook Problems:

(1) Work through the 15t problem for Section 3.6 (Figure 3.14)

(2) Work through Example 3.4

(3) Work through the 15t problem for Section 3.7 (Figure 3.19)

(4) Work through Example 3.6

(5) Problem 3.35 (Calculate only the steady state (equilibrium state) response)

(6) Problem 3.45 (Steady state response)

(7) Problem 3.71 (3.63 in the 5t Edition textbook; calculate steady state response)
(8) Problem 4.8 (Steady state response)

(9) Problem 4.12 (Steady state response)

*Notes:

(1) Lecture note 3&4 tells us how a standard mass-spring-damper system
responds to a force. In this HW, you will start with mechanical systems that
look somehow different from a standard mass-spring-damper system, but
can be described by dynamics equations that are equivalent to that of a
standard mass-spring-damper system. Work on (1) to (4) to learn more.

(2) Under a harmonic force the particular solution x, is usually the steady state
(equilibrium) motion that does not vanish. In contrast, the homogeneous
solution x, is usually the transient state solution that vanishes when a
friction exists (zeta > 0).
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3.45

Start this problem by the same procedure as for the 15 problem of
section 3.6,“Response of a Damped System Under the Harmonic Motion
of the Base”. From there you receive the ratio X/Y, which helps solve the
problem as follows:
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3.71

Start this problem by the same procedure as for the 15 problem of
section 3.7,“Response of a Damped System Under Rotating Unbalance”.
From there you receive force term.

Equation of motion: MX+cx+kx=mew? sinwt

ﬂ%ﬂ_ — 314.16 ra,d/sec, M = 100 kg, ¢ = 2000 N-s/m, k = 108 N/m,

m = 0.1 kg and e = r = 0.1 m. Steady state response is:
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4.8

Base motion can be represented by Fourier series as (from Example 1.19):
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Equation of motion of mass:
mX+cx—y)+k(Ex—y)=0 (2)

Since y(t) is composed of several terms, the solution of Eq. (2) can be found by
superposingg the solutions corresponding to each of the terms appearing in Eq. (1).
When y(t) = Y/2, constant, equation of motion becomes:

mii+c§{+kx=-k—2Y—=constant (3)

The steady state solution of Eq. (3) is given by

Y
x(t) = i <Refer to “Case 2” in the lecture note (4)
(5)
When y(t) = A sin () t, the steady state solution of Eq. (2) is given by Eq. (3.67):
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