

Homework 4 due date June 14

Stundet's Name:

Total Points: 100

Problem 1 (20 points):

Suppose $f(L, K) = K^2 + LK + L^{1/2}K^{1/2}$. Does this production function exhibit increasing, decreasing or constant returns to scale? Show your work.

Problem 2 (20 points):

Suppose $f(L, K) = KL^9$ $w = 1, r = 2$. $MPL = 9L^8K, MPK = L^9$. How much labor and capital should the firm hire if it wants to produce 10 units of output while minimizing its cost of production? Show your work.

Problem 3 (20 points):

Suppose $f(L, K) = \min\{2K, 5L\}$. $w = 1, r = 2500$. Derive the cost function. Show your work

Problem 4 (25 points):

Suppose we have a perfectly competitive market with price p . A typical firm has $VC(q) = q + aq^2$ and F (fixed cost). $MC(q) = 1 + 2aq$. a is a constant such that $a > 0$.

- a) (5 points) Derive expressions for AVC and AC
- b) (5 points) What is the range of prices for which the firm would shut down? Explain.
- c) (5 points) What is the supply function for the firm?
- d) (8 points) Suppose $p = 3$. Calculate firm's profits as a function of a . Show your work.
- e) (2 points) How do profits calculated in part d change with a ? Explain.

Problem 5 (15 points):

Suppose there are n identical firms each having a supply function $p = aq^2$. What is the market supply function? Show your work.