Homework Sheet 4 Due: July 7, 2017

The following questions are from chapter 6 of the OpenStax Calculus textbook. The problem number from the book is listed in parenthesis.

1. (4) True or false: If $\sum_{n=1}^{\infty} a_{n} x^{n}$ has radius of convergence $R>0$ and if $\left|b_{n}\right| \leq\left|a_{n}\right|$ for all n, then the radius of convergence of $\sum_{n=1}^{\infty} b_{n} x^{n}$ is greater than or equal to R. (Hint: consider The Direct Comparison Test.)
2. (8) Suppose that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$. Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{2^{n}}$.
3. (66) Use partial fractions to find the power series of the function

$$
\frac{3}{(x+2)(x-1)} .
$$

4. (92) Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{n}{3^{n}}
$$

by calculating $f^{\prime}(1 / 3)$, where $f(x)=\sum_{n=0}^{\infty} x^{n}$. (Your answer needs to be a number, not an infinite sum.)
5. (118) Find $T_{2}(x)$ (the quadratic Taylor polynomial) for the function $f(x)=\cos (2 x)$ centered at π.
6. (142) Find the Taylor series for $\sin x$ centered at π.
7. (214) Find the Maclaurin series of

$$
F(x)=\int_{0}^{x} \frac{\sin t}{t} d t
$$

by integrating

$$
\frac{\sin t}{t}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} t^{2 n}
$$

term by term.

Additional Problems

6.1 Power Series and Functions 5, 2, 15, 19, 25
6.2 Properties of Power Series 64, 70, 80, 102
6.3 Taylor and Maclaurin Series 130, 146, 154, 158
6.4 Working with Taylor Series 203, 209, 220, 235

Page 2

