Name \qquad

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

1) Find the result of performing the elementary row operation $R_{3}+(5) R_{2}$ on the system
2) \qquad $\left[\begin{array}{rrr|r}1 & 0 & 3 & 9 \\ 0 & 1 & -3 & 2 \\ 0 & -5 & 4 & 1\end{array}\right]$.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
2) The system $\left[\begin{array}{rrr|r}1 & 0 & 0 & -2 \\ 0 & 1 & 3 & 5 \\ 1 & 1 & -3 & 4\end{array}\right]$ is equivalent to the system
2) \qquad
A)
$\left[\begin{array}{rrr|r}1 & 0 & 0 & -2 \\ 0 & 1 & -3 & 5 \\ 0 & 1 & -3 & 4\end{array}\right]$
B)
$\left[\begin{array}{rrr|r}1 & 0 & 0 & -2 \\ 0 & 1 & -3 & 5 \\ 0 & 0 & 0 & 4\end{array}\right]$.
C)
$\left[\begin{array}{rrr|r}1 & 0 & 0 & -2 \\ 0 & 1 & 3 & 5 \\ 0 & 1 & -3 & 6\end{array}\right]$.
D)
$\left[\begin{array}{rrr|r}1 & 0 & 0 & -2 \\ 0 & 3 & -9 & 5 \\ 1 & 1 & -3 & 4\end{array}\right]$.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Use the indicated row operation to change the matrix.
3) Replace R_{2} by $\frac{1}{3} R_{1}+\frac{1}{2} R_{2}$.
3) \qquad

$$
\left[\begin{array}{rr|r}
3 & 0 & 12 \\
-2 & 4 & 6
\end{array}\right]
$$

Use the Gauss-Jordan method to solve the system of equations.
4)

$$
\left\{\begin{array}{l}
3 x+5 y=16 \\
3 x=-9
\end{array}\right.
$$

4) \qquad
5) $\left\{\begin{array}{c}x-y+4 z=-6 \\ 5 x+z=-1 \\ x+3 y+z=5\end{array}\right.$
6) Pivot the matrix $\left[\begin{array}{rr}1 & 3 \\ 4 & -2\end{array}\right]$ about the element 3 .
7) \qquad

Solve the system of linear equations using the Gaussian elimination method. If there is no solution, state so; if there are infinitely many solutions, find two of them.
7)
7) \qquad

$$
\left\{\begin{array}{r}
x-y+2 z=2 \\
y-2 z=1 \\
-3 x+5 y-10 z=-4
\end{array}\right.
$$

8)
9) \qquad
$\left\{\begin{array}{r}x-y-2 z=2 \\ y-2 z=1 \\ -3 x+5 y-10 z=-4\end{array}\right.$

For the system of equations, state whether there is one, none, or infinitely many solutions. If there are one or more solutions, give all values of x, y, and z that satisfy the system.
9)

$$
\left\{\begin{array}{r}
x+y-z=1 \\
y-2 z=1 \\
x+y-z=2
\end{array}\right.
$$

9) \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
10) Consider the system: $\left\{\begin{array}{r}x-y=7 \\ 2 x-2 y=k\end{array}\right.$. Which of the following statements is true?
10) \qquad
A) If $k=10$, the system has infinitely many solutions.
B) If $k=10$, the system has no solution.
C) If $k \neq 10$, the system has exactly one solution.
D) none of these

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Use the Gauss-Jordan method to solve the system of equations.

$$
\text { 11) } \begin{aligned}
-4 x-2 y & =6 \\
-16 x-8 y & =-1
\end{aligned}
$$

11) \qquad

Perform the matrix operation.
12) Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$ and $B=\left[\begin{array}{rr}0 & 4 \\ -1 & 6\end{array}\right]$. Find $4 A+B$.
12) \qquad
13) Let $\mathrm{C}=\left[\begin{array}{r}1 \\ -3 \\ 2\end{array}\right]$ and $\mathrm{D}=\left[\begin{array}{r}-1 \\ 3 \\ -2\end{array}\right]$. Find $\mathrm{C}-4 \mathrm{D}$.
13) \qquad

Find the matrix product $A B$, if it is defined.
14) $\mathrm{A}=\left[\begin{array}{rr}-1 & 3 \\ 2 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}-2 & 0 \\ -1 & 4\end{array}\right]$.
14) \qquad
15) $\mathrm{A}=\left[\begin{array}{rrr}3 & -2 & 1 \\ 0 & 4 & -2\end{array}\right], \mathrm{B}=\left[\begin{array}{rr}4 & 0 \\ -2 & 3\end{array}\right]$.
15) \qquad
16) $\mathrm{A}=\left[\begin{array}{rrr}1 & 3 & -2 \\ 2 & 0 & 3\end{array}\right], \mathrm{B}=\left[\begin{array}{rr}3 & 0 \\ -2 & 1 \\ 0 & 3\end{array}\right]$.
16) \qquad
17) Write the system of linear equations as a matrix equation.
17)

$$
\left\{\begin{aligned}
x+2 y+3 z & =4 \\
6 y+7 z & =8 \\
x & =5
\end{aligned}\right.
$$

\qquad

Write the matrix equation as a system of linear equations without matrices.
18)

$$
\left[\begin{array}{rr}
-7 & 0 \\
1 & 1 \\
-8 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-8 \\
8 \\
-7
\end{array}\right]
$$

18) \qquad
