Name_____

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

1) Find the result of performing the elementary row operation $R_3 + (5) R_2$ on the system

 $\begin{bmatrix} 1 & 0 & 3 & 9 \\ 0 & 1 & -3 & 2 \\ 0 & -5 & 4 & 1 \end{bmatrix}$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

2) The system $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -3 \end{bmatrix}$	$\begin{bmatrix} -2\\ 3\\ 5\\ 3\end{bmatrix}$ is equivalent to the system $\begin{bmatrix} 3\\ 4\end{bmatrix}$			2)
A)	В)	C)	D)	
$\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & -3 & 5 \\ 0 & 1 & -3 & 4 \end{bmatrix}$	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 3 & 5 \\ 0 & 1 & -3 & 6 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 3 & -9 & 5 \\ 1 & 1 & -3 & 4 \end{bmatrix}$	

1) _____

7) _____

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Use the indicated row operation to change the matrix.

3) Replace R₂ by
$$\frac{1}{3}$$
R₁ + $\frac{1}{2}$ R₂.

$$\begin{bmatrix} 3 & 0 & | 12 \\ -2 & 4 & | 6 \end{bmatrix}$$
3)

Use the Gauss-Jordan method to solve the system of equations.

4)
$$\begin{cases} 3x + 5y = 16 \\ 3x = -9 \end{cases}$$

5) $\begin{cases} x - y + 4z = -6 \\ 5x + z = -1 \\ x + 3y + z = 5 \end{cases}$
6) Pivot the matrix $\begin{bmatrix} 1 & 3 \\ 4 & -2 \end{bmatrix}$ about the element 3. 6) _____

Solve the system of linear equations using the Gaussian elimination method. If there is no solution, state so; if there are infinitely many solutions, find two of them.

7)					
	ſ	x –	y +	2z =	2
	ł		y -	2z =	1
	l-	-3x +	5y -	10z =	-4

1

8) _____

9) _____

12) _____

13)

14)

15) _____

 $\begin{cases} x - y - 2z = 2\\ y - 2z = 1\\ -3x + 5y - 10z = -4 \end{cases}$

For the system of equations, state whether there is one, none, or infinitely many solutions. If there are one or more solutions, give all values of x, y, and z that satisfy the system.

9) $\begin{cases} x + y - z = 1 \\ y - 2z = 1 \\ x + y - z = 2 \end{cases}$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

10) Consider the system: $\begin{cases} x - y = 7 \\ 2x - 2y = k \end{cases}$ Which of the following statements is true? (10) A) If k = 10, the system has infinitely many solutions. B) If k = 10, the system has no solution. C) If k ≠ 10, the system has exactly one solution.

D) none of these

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Use the Gauss-Jordan method to solve the system of equations.

11) -4x - 2y = 6-16x - 8y = -111)

Perform the matrix operation.

12) Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 4 \\ -1 & 6 \end{bmatrix}$. Find $4A + B$.

13) Let
$$C = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$$
 and $D = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$. Find $C - 4D$.

Find the matrix product AB, if it is defined.

14)
$$A = \begin{bmatrix} -1 & 3 \\ 2 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 0 \\ -1 & 4 \end{bmatrix}$.

15)
$$A = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 4 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 0 \\ -2 & 3 \end{bmatrix}$.

16)
$$A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 0 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 0 \\ -2 & 1 \\ 0 & 3 \end{bmatrix}$. 16) _____

17) Write the system of linear equations as a matrix equation.

$$\begin{cases} x + 2y + 3z = 4 \\ 6y + 7z = 8 \\ x = 5 \end{cases}$$

Write the matrix equation as a system of linear equations without matrices.

18)
$$\begin{bmatrix} -7 & 0\\ 1 & 1\\ -8 & -5 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} -8\\ 8\\ -7 \end{bmatrix}$$

18)

17)