
Java I Barry

Page 1 of 4

Project 2: Fun with Curve Math
Carefully read this entire document before beginning your work.

1 Objective
This project will require indefinite loops to do its work. You’ll also get a chance to display information to

the user and gather information from her. The project’s subject matter ties in nicely with the math that

you have studied. It will also test your ability to design your approach, develop incrementally, and test

your code.

2 Background
We’re working with a parabola specified by this equation: 𝑓(𝑥) = −(𝑥2) + 25 with x’s domain in the

range 0 to 5 (inclusive). The partial parabola looks like this:

For example, when the x coordinate is 4, the y coordinate is −(42) + 25 = −16 + 25 = 9

The slope of the line at a given point is given by: 𝑓′(𝑥) = −2x (determined using limits or calculus), so

for example when the x coordinate is 2.5, the slope of the line is −2 ∙ 2.5 = −5.

0

5

10

15

20

25

30

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

Parabola: f(x) = -(x2)+25

Java I Barry

Page 2 of 4

3 Area Estimation
The area under the curve can be estimated by using a series of n rectangles, each of which starts at a

calculated value of x, with a width specified by 5/n (x’s maximum domain divided by how many rectangles

we’re using) and the rectangle’s left-side y determined by the parabola’s defining equation1.

Were we to visualize the estimation for five rectangles, it would look like this:

The total area is the sum of the areas of all the rectangles, in this case 25 + 24 + 21 + 16 + 9 = 95. The

more rectangles one uses, the closer the resulting estimation to the actual area.

The actual area as determined by limits or calculus is: (125 −
125

3
) = 83. 33. So, after we calculate the

area using rectangles, we can tell how far off the estimate is, in this case it’s 14% too big; the

overestimation is apparent from the graph, in fact.

4 User Interface
Display this menu:

Parabola Calculations Menu

1. Calculate area estimates
2. Find the slope of the tangent line at a given x
3. Find y for a given x
4. Exit the program

Enter your choice:

1 This is called a Left Riemann Sum.

https://en.wikipedia.org/wiki/Riemann_sum

Java I Barry

Page 3 of 4

Keep the user within the menu system until they choose to exit, i.e., they can do more than activity while

they are there. If the user enters an integer outside the range of valid menu choices, or enters an invalid

data type, tell them they’ve made an error. The menu should then be displayed again.

Here are more details about the menu choices:

1. Asks the user for a starting and ending number of rectangles, plus an increment (and ensures the data

entered is reasonable, e.g., end must be greater than start and maximum number of rectangles is no

greater than 5000). For example, the user might supply 50, 80, and 10 to those questions,

respectively, indicating s/he wants to start at 50 rectangles, end at 80 rectangles, and increment each

time by 10 rectangles. Uses the rectangle estimation method to estimate the area for each number

of rectangles specified by the user (e.g., 50, 60, 70, and 80). For each calculation shows the calculated

area and the calculated delta from the actual area.

2. Asks the user for an x coordinate (0<=x<=5), then reports the slope of the tangent line.

3. Asks the user for an x coordinate (0<=x<=5), then reports the corresponding y value.

4. Exits gracefully (not artificially) from the program (i.e., a loop should end, you shouldn’t forcible

terminate the program or break out of the loop).

4.1 Getting User Input
Use a Scanner object to get keyboard input from the user.

5 Code Implementation
Create two separate classes, one that deals with the user, and one that does the math computations.

Examples of this type of code division can be found in MyMath.java and TestMyMath.java. Follow the

Course Style Guide.

5.1 ParaCalc
• This class should have no user communication; it is purely a supplier of calculation functions.

• There should be no main() method here.

• Write static methods for calculations that accept parameters and return results. Provide three public

methods, one for each of the specified calculations. Other helper functions may be created.

• Functions must implement precondition tests on parameter values and throw exceptions when

appropriate.

5.2 ParaApp
• This class should contain all the user communication, consisting of console display and user input via

the Scanner class. This class is a client of calculation functions from the ParabolaCalc class.

• This class should have a main() method.

• You may define class constants, but no other class-level variables.

• Implement generic (not problem-specific) functions to get in-range integers and floating-point values

from the user. Pass in the expected minimum and maximum; the functions should ensure the user

makes an entry in the specified range and using the right data type (using Scanner look-ahead) and

then passes back the user’s choice. Important: you’ll make of use of such functions in later projects!

• Create only one Scanner object instance. If you don’t understand why, think and ask! It’s a common

misconception that more are needed.

http://webshares.northseattle.edu/cscweb/CSC142/examples/clientSupplier/MyMath.java
http://webshares.northseattle.edu/cscweb/CSC142/examples/clientSupplier/TestMyMath.java
http://facweb.northseattle.edu/bbarry/CSC142/CSC142-StyleGuide.pdf

Java I Barry

Page 4 of 4

5.3 General
• Use procedural decomposition. Further decomposition is allowed if you think it helpful.

6 Testing
• Test each function individually (unit testing), then the program holistically (integration testing). You

don’t need this to be in code for this project; but be aware that you must code it in future projects.

• Don’t test only “happy path” inputs; you want to know what happens when bad inputs enter the

system, then modify your code to handle them if you know enough to do so.

7 Submitting Your Work
You’ll be creating two java files; zip them and submit them as a single file (e.g., in a .zip file). BlueJ can

also create .jar files; be sure and specify “include source” if you use this method.

8 Extra Credit
For 5% extra credit, draw the resulting rectangles on a DrawingPanel (when the user chooses area

estimation from the menu). This should work with any valid number of rectangles the user enters.

9 Grading Matrix and Achievement Levels
Achievement Max

Compile/runtime errors 50%

Basic with non-looping menu 60%

Basic with looping menu 65%

Input range checking 70%

Functions to get in-range integers and floating-point values 80%

Data type checking added to “get” functions 85%

Function preconditions added 90%

Documentation and style 100%

Rectangles drawn 105%

