

Name _____ ID Number _____

Unit 5 Evaluation

Advanced Algebra 1 (MTHH 039 058)

This evaluation will cover the lessons in this unit. It is open book, meaning you can use your textbook, syllabus, and other course materials. To submit the evaluation, follow the directions provided.

Your graphing calculator may be used on this evaluation. You may also use scratch paper to work out the solutions. Select the response that best completes the statement or answers the question.

____ 1. For which quadratic function is -3 the constant term?

- a. $y = (3x + 1)(-x - 3)$
- b. $y = x^2 - 3x + 3$
- c. $f(x) = (x - 3)(x - 3)$
- d. $g(x) = -3x^2 + 3x + 9$

____ 2. The vertex of a parabola is $(3, 2)$. A second point on the parabola is $(1, 7)$. Which point is also on the parabola?

- a. $(-1, 7)$
- b. $(3, 7)$
- c. $(5, 7)$
- d. $(3, -2)$

____ 3. The graph of a quadratic function has vertex $(-3, -2)$. What is the axis of symmetry?

- a. $x = -3$
- b. $x = 3$
- c. $y = -2$
- d. $y = 2$

____ 4. Which function is **not** a quadratic function?

- a. $y = (x - 1)(x - 2)$
- b. $y = x^2 + 2x - 3$
- c. $y = 3x - x^2$
- d. $y = -x^2 + x(x - 3)$

____ 5. What is the vertex of $y = -2x^2 - 4x - 5$?

- a. $(-2, -3)$
- b. $(1, -3)$
- c. $(1, -11)$
- d. $(-1, -3)$

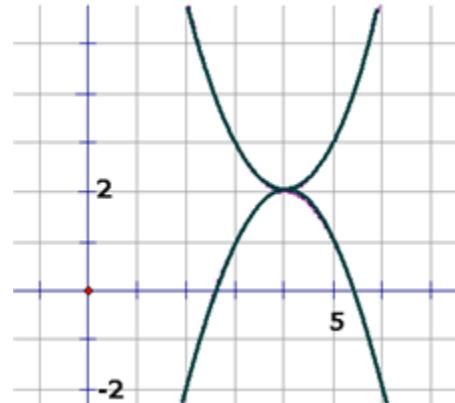
____ 6. What is the y -intercept of $y = (x + 1)^2 - 2$?

- a. $(0, -1)$
- b. $(0, -3)$
- c. $(0, 1)$
- d. $(0, -2)$

____ 7. What is the maximum area in square units of a rectangle with a perimeter of 128 units?

- a. 4096
- b. 1024
- c. 256
- d. 32

____ 8. The vertex of the graph of $y = -x^2 - 16x - 62$ lies in which quadrant?


- a. IV
- b. III
- c. II
- d. I

____ 9. What percent of nonzero integers have squares that are odd numbers?

- a. 25
- b. 50
- c. 75
- d. 100

10. One parabola shown here has the equation $y = (x - 4)^2 + 2$. What is an equation of the other?

- a. $y = -(x - 4)^2 + 2$
- b. $y = (x + 4)^2 - 2$
- c. $y = (-x - 4)^2 + 2$
- d. $y = -(x + 4)^2 - 2$

Use the following information about quadratic functions to answer questions 11–16.

vertex form: $y = a(x - h)^2 + k$

standard form: $y = ax^2 + bx + c$

11. When $y = -3x^2 - 18x - 23$ is written in vertex form, what is the value of k ?

- a. 4
- b. -3
- c. 54
- d. -18

12. When $y = 2(x - 3)(x + 5)$ is written in standard form, what is the value of b ?

- a. 2
- b. 4
- c. -30
- d. 5

13. When $y = -2(x + 3)^2 + 25$ is written in standard form, what is the value of c ?

- a. 2
- b. 18
- c. 12
- d. 7

____ 14. For $y = -3x^2 - 7x + 5$, what is the x -value of the vertex?

- a. $-\frac{5}{3}$
- b. $\frac{7}{3}$
- c. $-\frac{7}{6}$
- d. $\frac{6}{5}$

____ 15. What is the y -coordinate of the vertex of $y = -2(x + 1)^2 + 3$?

- a. -2
- b. 1
- c. 3
- d. 2

____ 16. How many units down must you shift the graph of $y = 3(x + 3)^2$ to get the graph of $y = 3(x + 3)^2 - 2$?

- a. 2
- b. 3
- c. 9
- d. 6

____ 17. Which term is **not** a common factor of $4a^2c^2 + 2a^2c - 6ac^2$?

- a. $4c$
- b. $2a$
- c. $2ac$
- d. ac

____ 18. How can you write $(m - 5)(m + 4) + 8$ as a product of two binomials?

- a. $(m - 1)(m + 8)$
- b. $(m - 4)(m + 3)$
- c. $(m + 8)(m + 8)$
- d. $(m - 5)(8m + 32)$

____ 19. What is the factored form of $4x^2 + 15x - 4$?

- a. $(2x + 2)(2x - 2)$
- b. $(2x - 4)(2x + 1)$
- c. $(4x + 1)(x - 4)$
- d. $(4x - 1)(x + 4)$

_____ 20. Which is a factored form of $0.81p^2 - 0.09$?

- a. $(0.9p + 0.045)(0.9p - 0.045)$
- b. $(0.09p + 0.03)(0.09p - 0.03)$
- c. $(0.9p + 0.3)(0.9p - 0.3)$
- d. $(0.9p + 0.81)(0.9p - 0.81)$

_____ 21. The period of a pendulum is the time the pendulum takes to swing back and forth one full time. The function $l = 0.81t^2$ relates the length l in feet of a pendulum to the time t in seconds that it takes to swing back and forth. The convention center in Portland, Oregon, has the longest pendulum in the U.S. The pendulum's length is 90 ft. Find the period for this pendulum.

- a. 8.5 seconds
- b. 10.5 seconds
- c. 90 seconds
- d. 111 seconds

_____ 22. What are the values of x that satisfy the equation $3 - 27x^2 = 0$?

- a. $x = \pm 3$
- b. $x = \pm \frac{1}{3}$
- c. $x = \frac{1}{9}$ or $x = -\frac{1}{9}$
- d. $x = 2\sqrt{6}$ or $x = -2\sqrt{6}$

_____ 23. What are the solutions of the equation $6x^2 + 9x - 15 = 0$?

- a. 1, -15
- b. $1, -\frac{5}{2}$
- c. -1, -5
- d. $3, \frac{5}{2}$

_____ 24. For which equation is -3 **not** a solution?

- a. $x^2 - 2x - 15 = 0$
- b. $x^2 - 21 = 4x$
- c. $2x^2 + 12x = -18$
- d. $9 + x^2 = 0$

_____ 25. What are the solutions of the equation $(2x - 7)^2 = 25$?

- a. 6, -6
- b. 6, 1
- c. 6, -1
- d. -6, -1

_____ 26. Find the sum of the solutions to the equation $x^2 + 2x - 15 = 0$.

- a. 8
- b. -8
- c. 2
- d. -2

_____ 27. Find the product of the solutions to the equation $x^2 - 8x = 9$.

- a. 6
- b. -6
- c. 9
- d. -9

_____ 28. Which equation has $-\frac{2}{5}$ as a solution?

- a. $(2x - 5)(x + 1) = 0$
- b. $(2x + 5)(x + 1) = 0$
- c. $(5x - 2)(x + 1) = 0$
- d. $(5x + 2)(x + 1) = 0$

_____ 29. How many times does the graph of $y = x^2 - 4x - 5$ cross the x -axis?

- a. 0
- b. 1
- c. 2
- d. 33

_____ 30. The equation $x^2 - 3x + a = 0$ has two roots. One root of the equation is 2. What is the other root?

- a. -2
- b. -1
- c. 1
- d. 3

_____ 31. What is the number $\sqrt{-225} + 36$ when written in the form $a + bi$?

- a. $-15 + 6i$
- b. $6 + 15i$
- c. $6 - 15i$
- d. $36 + 15i$

_____ 32. How can you rewrite the expression $(8 - 5i)^2$ in the form $a + bi$?

- a. $39 + 80i$
- b. $39 - 80i$
- c. $69 + 80i$
- d. $69 - 80i$

_____ 33. What are the solutions of $-4x^2 - 72 = 0$?

- a. $\pm 2i\sqrt{3}$
- b. $\pm 3i\sqrt{2}$
- c. $\pm 2\sqrt{3}$
- d. $\pm 3\sqrt{2}$

_____ 34. Which description of the graph of $y = ax^2 + bx + c$ is **not** possible?

- a. There are two x-intercepts, the vertex is below the x-axis, and $a > 0$.
- b. There is one x-intercept and the vertex is on the x-axis.
- c. There are two x-intercepts, the vertex is below the x-axis, and $a < 0$.
- d. There are no x-intercepts, the vertex is above the x-axis, and $a > 0$.

_____ 35. What can you add to $x^2 + 5x$ to get a perfect square trinomial?

- a. 5
- b. 6.25
- c. 25
- d. $2.5x$

_____ 36. How can you rewrite the equation $x^2 + 12x + 5 = 3$ so the left side of the equation is in the form $(x + a)^2$?

- a. $(x - 6)^2 = 28$
- b. $(x + 6)^2 = 34$
- c. $(x + 6)^2 = 39$
- d. $(x + 12)^2 = -2$

_____ 37. What is the discriminant of $qx^2 + rx + s = 0$?

- a. $|a + b|$
- b. $q^2 - 4rs$
- c. $r^2 - 4qs$
- d. $s^2 - 4qr$

_____ 38. How many different real solutions are there for $2x^2 - 3x + 5 = 0$?

- a. 0
- b. 1
- c. 2
- d. i

_____ 39. Which equation has $-3 \pm 5i$ as its solutions?

- a. $x^2 + 6x = -34$
- b. $x^2 + 6x = -14$
- c. $x^2 + 3x = 4$
- d. $x^2 + 3x = 2$

_____ 40. If a quadratic equation has a discriminant that equals zero, which of the following statements is always true?

- a. The equation has two solutions and the parabola will open upward.
- b. The equation has one solution and the parabola will open downward.
- c. The equation has zero solutions and there is not enough information to determine the direction of the parabola.
- d. The equation has one solution and there is not enough information to determine the direction of the parabola.

Carefully check your answers on this evaluation and make any corrections you feel are necessary. When you are satisfied that you have answered the questions to the best of your ability, transfer your answers to an answer sheet. Please refer to the information sheet that came with your course materials.