\qquad
\qquad
\qquad

Chapter 11 Find the Errors!

For use with Lessons 11-1 through 11-3

For each exercise, identify the error(s) in planning the solution or solving the problem. Then write the correct solution.

1. In how many ways can you arrange 5 books on a shelf?
$5!=5+4+3+2+1=15$
There are 15 ways to arrange 5 books on a shelf.
2. A teacher is choosing 4 students from a class of 30 to represent the class at a science fair. In how many ways can the teacher choose the students?
${ }_{30} P_{4}=\frac{30!}{(30-4)!}=\frac{30 \cdot 29 \cdot 28 \cdot 27 \cdot 28!}{28!}=657,720$
There are 657,720 ways to choose the students.
3. What is the theoretical probability of getting a sum of 9 on one roll of two fair number cubes?

There are 36 equally likely outcomes.
The favorable outcomes are those with a sum of 9:3, 6 and 4, 5 .
$P($ sum 9$)=\frac{2}{36}=\frac{1}{18}$
4. In a cooler there are 8 bottles of grape juice and 12 bottles of orange juice. There are also 6 blueberry yogurts and 9 strawberry yogurts. If you grab a bottle of juice and a yogurt without looking, what is the probability that you get a grape juice and a blueberry yogurt?

Event $A=$ picking grape Event $B=$ picking blueberry
$P(A$ and $B)=P(A)+P(B)$
$=\frac{8}{20}+\frac{6}{15}$
$=\frac{4}{5}$
The probability that you get a grape juice and a blueberry yogurt is $\frac{4}{5}$, or 80%.
\qquad Class \qquad Date \qquad

Chapter 11 Find the Errors!

For use with Lessons 11-4 through 11-6

For each exercise, identify the error(s) in planning the solution or solving the problem. Then write the correct solution.

1. A survey asked 40 people where they learned about news of current events. What is the probability that a person gets the news online, given that the person is female?

	TV	Radio	Online	Newspaper
Male	6	3	6	5
Female	5	3	8	4

$P($ female and online $)=\frac{8}{40}=\frac{1}{5}$
The probability that a person gets the news online given that the person is female is $\frac{1}{5}$, or 20%.
2. The frequency table shows the number of siblings students in a class have.

What are the mean, median, and mode for the siblings per student?

Siblings	0	1	2	3	4	5
Students	3	7	6	3	0	1

Mean $=\frac{3(0)+7(1)+6(2)+3(3)+0(4)+1(5)}{0+1+2+3+4+5}=2.2$
Median: $0,0,0,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,5$

$$
\text { The median is } \frac{1+2}{2}=1.5 \text {. }
$$

Mode: Seven students have 1 sibling. The mode is 1 .
3. What are the mean, variance, and standard deviation of these values?

624154604958

$$
\begin{aligned}
& \bar{x}=\frac{62+41+54+60+49+58}{6}=54 \\
& \sigma^{2}=\frac{\left(\sum(x-\bar{x})^{2}\right)^{2}}{n}=\frac{310^{2}}{6} \approx 16,016.67 \\
& \sigma=\sqrt{\sigma^{2}} \approx \sqrt{16016.67} \approx 126.56
\end{aligned}
$$

\qquad
\qquad
\qquad

Chapter 11 Find the Errors!

For use with Lessons 1 1-7 through 11-9

For each exercise, identify the error(s) in planning the solution or solving the problem. Then write the correct solution.

1. A school wants to determine the average time it takes students to get to school. Every student coming off of a bus is surveyed. What is the sampling method used? Does the sample have a bias?

This is a random sample because each student is equally likely to be chosen. There is not likely to be any bias.
2. In a high school, 35% of the 3500 students participate in sports. The school board is proposing a participation fee to help with costs. To get student opinion, the school board randomly selects a committee of 6 students to join a discussion of the proposal. What is the probability that exactly 4 of the students participate in sports?

- The situation involves 6 repeated trials, 6 students selected at random.
- Each trial has two possible outcomes: A student participates in sports or not.
- The probability of success is constant, 0.35 , throughout the trials because the sample is small compared to the size of the student body.

This is a binomial experiment with $n=6, x=4$, and $p=0.35$.

$$
\begin{aligned}
P(x)={ }_{n} C_{x} P^{x} & ={ }_{6} C_{4}(0.35)^{4} \\
& =15(0.35)^{4} \\
& \approx 0.23
\end{aligned}
$$

The probability is about 23% that exactly 4 of the selected students participate in sports.
3. Students at a high school all took the same English test. The scores are approximately normally distributed with a mean of 77 and a standard deviation of 9 . If 2500 students took the test, approximately how many scored above 86 or below 68 ?

Draw a normal curve.

$P($ score >86 or $<68)=0.0235+0.135+0.135+0.0235=0.317$

$$
0.317 \cdot 2500=792.5
$$

You would expect that about 793 students scored above 86 or below 68 .

