
CSCI	1101	
Computer	Science	II	

	
Assignment	No.	3	

Date	Given:	Monday,	March	6,	2017	
Due:	Friday,	March	17,	2017,	11.55	p.m.	

	
This	assignment	will	test	your	skills	 in	object-oriented	programming	with	multiple	classes	and	the	use	of	ArrayLists	as	
the	data	structure.	You	are	to	design	a	program	that	implements	a	basic	Airline	Booking	System	(ABS).	The	ABS	allows	a	
client	program	 to	 create	 airports,	 airlines,	 and	 flights.	Each	 flight	has	 an	originating	 airport	 (origin)	 and	a	destination	
airport	(destination).	The	origin	and	destination	cannot	be	the	same.	Each	flight	consists	of	seats	organized	in	rows.	Each	
row	has	six	seats	(“A”,	“B”,	“C”,	“D”,	“E”,	“F”).		Your	program	should	have	the	following	functionality:	
	

1. Create	an	airport:	An	airport	must	have	a	name	consisting	of	exactly	three	alphabetic	characters.	No	two	airports	
can	have	the	same	name.	

2. Create	an	airline:	An	airline	has	a	name	that	must	have	a	length	less	than	6	alphabetic	characters.	No	two	airlines	
can	have	the	same	name.	

3. Create	a	flight	given	an	airline	name,	the	name	of	the	originating	airport,	the	name	of	a	destination	airport,	and	a	
flight	number:	A	flight	has	an	identifier	that	is	a	string	of	alphanumeric	characters.	

4. Create	seats	for	a	flight:	The	number	of	rows	of	seats	for	this	flight	is	provided.	
5. Find	available	flights:	Finds	all	flights	from	an	originating	airport	to	a	destination	airport.	
6. Book	a	seat:	Books	an	available	seat	from	a	given	origin	to	a	given	destination	on	a	given	flight.	
7. Print	system	details:	Displays	attributes	of	all	objects	(e.g.,	airports,	airlines,	etc.)	in	the	system.	

	
Your	program	must	have	the	following	classes:	
	

1. System	Manager	class:	This	is	the	main	class	that	aggregates	the	other	classes	and	provides	functionality	to	the	
client	program.	A	client	program	with	a	main	method	accesses	the	System	Manager	class.	
	
This	class	has	the	following	attributes:	
Airports	–	an	arraylist	of	airport	objects,	initially	empty.	
Airlines	–	an	arraylist	of	airline	objects,	initially	empty.	
Flights	–	an	arraylist	of	flight	objects,	initially	empty.	
	
If	required,	add	other	attributes.	
	
The	class	has	the	following	methods:	
	
	
createAirport(String	n):	Creates	an	airport	object	and	updates	the	appropriate	arraylist.	The	airport	will	have	a	
name	(code)	n;	n	must	have	exactly	three	alphabetic	characters.	No	two	airports	can	have	the	same	name.	
createAirline(String	n):	Creates	an	airline	object	with	name	n	and	updates	the	appropriate	arraylist.	An	airline	
has	a	name	that	must	have	a	length	less	than	6.	No	two	airlines	can	have	the	same	name.	
createFlight(String	aname,	String	orig,	String	dest,	String	 id):	Creates	a	 flight	 for	an	airline	named	aname,	
from	an	originating	airport	(orig)	to	a	destination	airport	(dest).	The	flight	has	an	identifier	(id).		
createSeats(String	air,	 String	 flID,	 int	 rows):	Creates	 seats	with	 the	 given	number	of	 rows	 for	a	 flight	with	
identifier	flID,	associated	with	an	airline,	air.		
findAvailableFlights(String	orig,	String	dest):	Finds	all	flights	from	airport	orig	to	airport	dest.	
bookSeat(String	air,	String	fl,	int	row,	char	col):	Books	seat	in	given	row	and	column	on	flight	fl	of	airline	air,	
if	that	particular	seat	is	still	available.	
displaySystemDetails():	Displays	attribute	values	for	all	objects	(e.g.,	airports,	flights)	in	the	system.	
	

2. Airport	class:	The	only	information	that	is	maintained	in	this	class	is	the	name,	which	must	be	three	alphabetic	
characters.	Add	the	appropriate	get,	set	and	toString	methods.	

3. Airline	class:	This	class	maintains	information	about	airlines.	All	flights	for	a	given	airline	must	have	unique	ids.	
4. Flight	class:	This	class	maintains	information	about	flights.	It	has	the	following	attributes:	

a. Airline		
b. Flight	id		
c. Originating	airport	and	destination	airport		
d. Seats:	An	array	of	Seat	objects.	

	

Add	appropriate	attributes	 (e.g.,	you	could	also	have	 the	originating	and	destination	airports	as	attributes	
for	a	flight)	and	methods.	
	

5. Seat	class:	This	class	maintains	information	about	seats.	Each	seat	has	an	identifier	(a	seat	is	identified	by	a	row	
number	and	a	column	character,	which	is	a	letter	from	A	to	F).	All	flights	have	6	seats	per	row.	For	example,	you	
could	have	a	seat	called	2A	meaning	it	is	the	first	seat	in	the	second	row,	or	10B	which	means	the	second	seat	in	
row	10).	Seat	also	has	a	status	which	indicates	if	the	seat	is	booked	or	available.	
Add	the	appropriate	attributes	and	methods.	

	
The	following	is	a	sample	client	program	with	a	main	method	that	calls	operations	in	the	SystemManager.	You	
must	create	your	own	test	program.	
public class Client{
 public static void main (String[] args){
 SystemManager res = new SystemManager();

 //create airports
 res.createAirport(“YHZ”);
 res.createAirport(“YYZ”);
 res.createAirport(“YUL”);
 res.createAirport(“YVR”);
 res.createAirport(“YYC”);
 res.createAirport(“LONDON”); //invalid
 res.createAirport(“123”); //invalid
 res.createAirport(“YEG”);
 res.createAirport(“BOS”);
 res.createAirport(“JFK”);

 //create airlines
 res.createAirline(“AC”);
 res.createAirline(“DELTA”);
 res.createAirline(“USAIR”);
 res.createAirline(“WSJET”);
 res.createAirline(“FRONTIER”); //invalid

 //create flights
 res.createFlight(“AC”, “YHZ”, “YUL”, “123”);
 res.createFlight(“AC”, “YHZ”, “YYZ”, “567”);
 res.createFlight(“AC”, “YUL”, “YHZ”, “789”);
 res.createFlight(“AC”, “YUL”, “YVR”, “123”);

 //invalid – AC cannot have two flights with same id.

res.createFlight(“AC”, “YHZ”, “YYZ”, “689”);
 res.createFlight(“DELTA”, “YHZ”, “BOS”, “123”);

 //etc.

 //create seats
 res.createSeats(“AC”, “123”, 40);
 res.createSeats(“DELTA”, “123”, 25);

 //etc.

 //find available flights
 res.findAvailableFlights(“YHZ”, “YYZ”);

 //book seats
 res.bookSeat(“AC”, “123”, 1, ‘A’);
 res.bookSeat(“AC”,“123”,20,‘F’);

res.bookSeat(“AC”, “506”, 2, ‘B’); //invalid – 506 not created
 res.bookSeat(“AC”, “123”, 55, ‘C’); //invalid – row 55 doesn’t exist

 //display system details
 res.displaySystemDetails();

}
}

	
Submit	your	all	your	java	files	and	sample	outputs.	

