Homework 2

Before attempting this project, be sure you have completed all of the reading assignments, hands-on
labs, discussions, and assignments to date.

Design a Java class named Polygon that contains:

e A private int data field named numSides that defines the number of sides of the
polygon. The default value should be 4.

e A private double data field named sideLength that defines the length of each side. The
default value should be 5.0.

e A private double data field named xCoord that defines the x-coordinate of the center of
the polygon. The default value should be 0.0.

e A private double data field named yCoord that defines the y-coordinate of the center of
the polygon. The default value should be 0.0.

e A private double data field named apothem that defines the apothem of the polygon.
The default value should 5.0.

e A private double data filed named perimeter that defines the perimeter of the polygon.
The default value should 20.0.

e A no argument constructor that creates a Polygon using the default number of sides,
default side length, default x- and y-coordinates, and the default apothem.

e A constructor that creates a Polygon using a specified number of sides, side length, x-
and y-coordinates and the apothem

e Getter and setter methods for all data fields

e A getArea() method that returns a double value representing the area of the polygon.
(Note the area of a regular Polgon can be calculated from % * Apothem*Perimeter)

e AtoString() method that displays the number of sides, side length, x-coordinate, y-
coordinate and apothem values in String format

Be sure your code compiles. You should use the command prompt and not a GUI for data entry and
display.

Write a Java test program, named TestPolygon, to create 5 different polygons representing the 5 test
cases you just created. When creating the five polygons, create one using the no argument constructor.
For the remaining four, feel free to use any number of sides, side length and x-, and y-coordinates and
apothem that are not equal to the default values and not equal to each other. For each of the five
polygons, call all of the methods and display the results. For example for a Polygon with 3 sides, side
length of 2.0 and x-coordinate and y-coordinates of 1.0, and apothem of 1.0 the following test data may
result:

Output
toString(): (numsides=3, sidelLength=2.0, xcoord=1l.0,ycoord=1.0, apothem=1.0)
getNumSides () : 3

getSideLength(): 2.0

getXCoord(): 1.0
getYCoord(): 1.0
getApothem() :1.0

getPerimeter(): 6.0

getArea(): 3.0

Document your test cases in the form of table with columns indicating the input values, expected

output, actual output and if the test case passed or failed. This table should contain 4 columns with
appropriate labels and a row for each test case. An example template is shown below. Note that the
actual output should be the actual results you receive when running your program and applying the
input for the test record.

Keep in mind, for five Polygons, you will have five different output results. Also, note there is no

requirement to actually draw a Polygon.

Example test cases:

Input

Expected Output

Actual Output

Pass?

Constructor:
numsides=3
sideLength=2.0
xcoord=1.0
ycoord=1.0
apothem=1.0

** Qutput **
toString(): (numsides=3,
sideLength=2.0,
xcoord=1.0, ycoord=1.0,
apothem=1.0)
getNumSides () : 3
getSideLength(): 2.0
getXCoord(): 1
getYCoord(): 1
getApothem() : 1
getPerimeter ()
getArea(): 3.0

6.0

** Qutput **

toString(): (numsides=3,
sideLength=2.0,
xcoord=1.0, ycoord=1.0,
apothem=1.0)
getNumSides () : 3
getSideLength(): 2.0
getXCoord(): 1.
getYCoord(): 1.
getApothem() : 1.
getPerimeter(): 6.0
getArea(): 3.0

Yes

Test case 2 here

Test case 3 here

Test case 4 here

Test case 5 here

The google recommended Java style guide, provided as link in the week 2 content, should be used to
format and document your code. Specifically, the following style guide attributes should be addressed:

e Header comments include filename, author, date and brief purpose of the program.
e In-line comments used to describe major functionality of the code.

e Meaningful variable names and prompts applied.

e (Class names are written in UpperCamelCase.

e Variable names are written in lowerCamelCase.

e Constant names are in written in All Capitals.
e Braces use K&R style.

Submission requirements

Deliverables include all Java files (.java) and a single word (or PDF) document. The Java files should be
named appropriately for your applications. The word (or PDF) document should include screen captures
showing the successful compiling and running of each of the test cases. Each screen capture should be
properly labeled clearly indicated what the screen capture represents. The test cases table should be

included in your word or PDF document and properly labeled as well.

Submit your files to the Homework 2 assignment area no later than the due date listed in your LEO
classroom. You should include your name and HW2 in your word (or PDF) file submitted (e.g.
firstnamelastnamehw2.docx or firstnamelastnamehw?2.pdf)

Grading Rubric:

The following grading rubric will be used to determine your grade:

Attribute

Meets

Does not meet

Polygon Class

10 points

Private int data field named
numSides that defines the
number of sides of the polygon.
The default value should be 4.

Private double data field named
sideLength that defines the
length of each side. The default
value should be 5.0.

Private double data field named
xCoord that defines the x-
coordinate of the center of the
polygon. The default value
should be 0.0.

Private double data field named
yCoord that defines the y-
coordinate of the center of the
polygon. The default value
should be 0.0.

Private double data field named
apothem that defines the
apothem of the polygon. The
default value should 5.0.

Private double data filed named
perimeter that defines the

0 points

Private int data field named
numSides was not included.

Private double data field named
sideLength was not included

Private double data field named
xCoord was not included

Private double data field named
yCoord was not included

Private double data field named
apothem was not included.

Private double data filed named
perimeter was not included

No argument constructor that
creates a Polygon was not
included

Constructor that creates a
Polygon using a specified
number of sides, side length, x-
and y-coordinates and the
apothem was not included

perimeter of the polygon. The
default value should 20.0.

No argument constructor that
creates a Polygon using the
default number of sides, default
side length, default x- and y-
coordinates, and the default
apothem.

Constructor that creates a
Polygon using a specified
number of sides, side length, x-
and y-coordinates and the
apothem

Getter and setter methods for
all data fields

getArea() method that returns a
double value representing the
area of the polygon. (Note the
area of a regular Polgon can be
calculated from % *
Apothem*Perimeter)

toString() method that displays
the number of sides, side
length, x-coordinate, y-
coordinate and apothem values
in String format

Command line was used for
running the application.

Getter and setter methods for
all data fields were not included

getArea() method was not
included

toString() method was not
included

Command Line was not used for
running application

Test Polygon Class

5 points

TestPolygon used to create 5
different polygons representing
the 5 test cases you just
created.

One test cases used the no
argument constructor.

An additional 4 test cases with
varying input values.

0 points

TestPolygon was not used to
create 5 different polygons
representing the 5 test cases
you just created.

One test cases was not used
with the no argument
constructor.

For each of the five polygons,
all of the methods were called
and resulted displayed.

Command Line was used for
output.

An additional 4 test cases with
varying input values were not
used.

For each of the five polygons,
none of the methods were
called

Command Line was not used for
output.

Test Cases

5 points

A minimum of 5 test cases was
used in the form of table with
columns indicating the input
values, expected output, actual
output and if the test case
passed or failed. The table
should contains 4 columns with
appropriate labels and a row for
each test case.

Test cases were included in the
supporting word or PDF
documentation.

0 points

No test cases were provided.

Documentation and Style guide

5 points

Screen captures were provided
and labeled for compiling your
code, and running each of your
5 test cases.

Header comments include
filename, author, date and brief
purpose of the program.

In-line comments used to
describe major functionality of
the code.

Meaningful variable names and
prompts applied.

Class names are written in
UpperCamelCase.

0 points
No documentation included

Java style guide was not used to
prepare the Java code.

Variable names are written in
lowerCamelCase.

Constant names are in written
in All Capitals.

Braces use K&R style.

