
1 

Project 4 

1. Specification 
 
This programming project involves writing a program to manage a student database. The interface to the program 
should be a Swing based GUI that looks similar to the following: 

 

 
A combo box should allow the user to select one of the four database actions shown. The database should be 
implemented as a HashMap, with the Id field as the key and a Student record as the value. The selected operation 
should be performed when the user clicks the Process Request button. If the user attempts to insert a key that is 
already in the database an error message should be displayed using a JOptionPane message dialog box. If the user 
attempts to delete, find or update a record that is not in the database, a message should also be displayed in a 
JOptionPane. After each successful operation is completed a JOptionPane window should be displayed confirming 
the success. In the case of a successful Find request, a window should pop up containing the student's Id, name, 
major and current GPA. When the user selects the Update request, the following JOptionPane windows should be 
displayed to gather information about a course that has just been completed. As a result, the Student record in 
the database will be updated accordingly. User input values should be checked and a warning message should be 
displayed in a JOptionPane for inappropriate values (such as empty textfields for Id, name or major).  
 

 

 

 

 

 

When the main application window is closed, the student records from the database will be written into the text 
file outData.txt, each student data (including his/her GPA) on a separate line.  The last line of the file will contain 
the total number of student records in the database and their average GPA value. 
  

The program should consist of two classes.  
 
1. The first class P4GUI should define the GUI and handle the database interactions. It should be hand-coded and 
not generated by a GUI generator.  



2 

 
2. The second class named Student, should define the student record. The class defines the instance variables id, 
name, major, totalCredits (as total number of credits completed) and totalQP (as total quality points). The quality 
points for a course is calculated as the numeric value of the grade received in the course (A =  4; B = 3; C = 2; D = 1; 
F = 0) times the number of credit hours for that course. The values of totalCredits and totalQP will be used to 
calculate the GPA by dividing totalQP by totalCredits. The class Student should have the following three methods: 

a. A constructor with arguments that is used when new student records are created It takes Id, name and 
major as parameters and will initialize totalCredits and totalQP to zero;  

b. A method courseCompleted that should accept the course grade and credit numbers and will update  
the variables used to compute the GPA. It will be called when an Update request is made.  

c. A method overriding toString that returns a labeled string containing the student id, name, major and 
GPA. 

 
Finally, when a student has not yet completed any course, the GPA should be displayed as 4.0. 
 
Your program should compile without errors. 
 
The Google recommended Java style guide (https://google.github.io/styleguide/javaguide.html) should be used to 
format and document your code. Specifically, the following style guide attributes should be addressed: 
 

 Header comments include filename, author, date and brief purpose of the program.  

 In-line comments used to describe major functionality of the code.  

 Meaningful variable names and prompts applied.  

 Class names are written in UpperCamelCase.  

 Variable names are written in lowerCamelCase.  

 Constant names are in written in All Capitals.  

 Braces use K&R style.  

 
In addition the following design constraints should be followed:  
 

 Declare all instance variables private  

 Avoid the duplication of code  

 
Test cases should be supplied in the form of a table with columns indicating what aspect is tested, the input 
values, expected output, actual output and if the test case passed or failed. This table should contain 5 columns 
with appropriate labels and a row for each test case. Note that the actual output should be the actual results you 
receive when running your program and applying the input for the test record. Be sure to select enough different 
kinds of employees and situations to completely test the program. 
 
2. Submission Requirements 
 
Submit the following to the Project 2 assignment area no later than the due date listed in your LEO classroom. 
 
1. The source files P4GUI.java and Student.java and the program generated output file outData.txt.  The source 
code should use Java code conventions and appropriate code layout (white space management and indents) and 
comments.  All submitted files may be included in a .zip file. 
 
2. The solution description document P4SolutionDescription (.pdf or .doc / .docx) containing the following:  

https://google.github.io/styleguide/javaguide.html


3 

(1) Assumptions, main design decisions, error handling;  
(2) Test cases table 
(3) Screen captures showing successful program compilation and test cases execution. Each screen capture should 
be properly labeled, clearly indicated what the screen capture represents. 
(4) Lessons learned from the project;  
 
3. Grading Rubric 
 
The following grading rubric will be used to determine your grade: 
 

Attribute Meets Does not meet 

P4GUI class  35 points  
 
a) Defines the GUI.  
 
b) Provides a combo box to allow the 
user to select one of the four database 
actions including insert, update, delete 
and find. 
  
c) The database is implemented as a 
HashMap, with the ID field as the key 
and a student record as the value. 
 
d) The operation is performed when 
the user clicks the Process Request 
button. 
 
e) User input values are checked and 
warning message is displayed for 
inappropriate values entered in the Id, 
name or major textfields. 
  
f) If the user attempts to insert a key 
that is already in the database an error 
message is displayed using a 
JOptionPane message dialog box.  
 
g) If the user attempts to delete, find or 
update a record that is not in the 
database, a message is displayed. 
   
h) After each successful operation is 
completed a JOptionPane is displayed 
confirming the success. 
  
i) In the case of a successful Find 
request, a window pops-up containing 
the student's ID, name, major and 
current GPA. 
 

0 points  
 
a) Does not defines the GUI.  
 
b) Does not provide a combo box to allow 
the user to select one of the four database 
actions including insert, update, delete 
and find.  
 
c) The database is not implemented as a 
HashMap, with the ID field as the key and 
a student record as the value.  
 
d) The operation is not performed when 
the user clicks the Process Request 
button.  
 
e) User input values are not checked and 
warning message is not displayed for 
inappropriate values entered in the Id, 
name or major textfields. 
 
f) If the user attempts to insert a key that 
is already in the database an error 
message is not displayed using a 
JOptionPane message dialog box.  
 
g) If the user attempts to delete, find or 
update a record that is not in the 
database, a message is not displayed.  
 
h) After each successful operation is 
completed a JOptionPane is not displayed 
confirming the success. 
 
i) In the case of a successful Find request, 
a window does not pop-up containing the 
student's ID, name, major and current 
GPA.  
 



4 

j) When the user selects the Update 
request, a JOptionPane is displayed to 
gather information about a course that 
has just been completed including the 
grade and number of credits. 
 
k) When the window is closed, the 
student records from the database are 
written in a file, each student data 
(including their GPA) on a separate line. 
 
l) The last line of the file contain the 
total number of student records in the 
database and their average GPA value. 

j) When the user selects the Update 
request, a JOptionPane is not be displayed 
to gather information about a course that 
has just been completed including the 
grade and number of credits. 
  
k) When the window is closed, the student 
records from the database are not written 
in a file, each student data (including their 
GPA) on a separate line. 
 
l) The last line of the file does not contain 
the total number of student records in the 
database and their average GPA value 

Student  Class 40 points  
 
a) Defines the student record. 
 
b) Contains instance variables for the 
student id, name, major and two 
variables that are used to compute the 
GPA. 
 
c) Contains a variable representing the 
total number of credits completed 
 
d) Contains a variable representing the 
total quality points, which are the 
numeric value of the grade received in 
a course times the number of credit 
hours. 
 
e) Contains a constructor that is used 
when new student records are created. 
It should accept Id, name and major as 
parameters and initialize the fields that 
are used to compute the GPA to zero. 
 
f) Contains a method courseCompleted 
that accepts the course grade and 
credit numbers and update the 
variables used to compute the GPA. 
 
g) courseComplete is called when an 
Update request is made. 
 
h) Contains an overridden toString 
method that returns a labeled string 
containing the student name, major 
and GPA. 
 

0 points  
 
a) Does not define the student record. 
 
b) Does not contains instance variables for 
the student id, name, major and two 
variables that are used to compute the 
GPA. 
 
c) Does not contain a variable 
representing the total number of credits 
completed 
 
d) Does not contain a variable 
representing the total quality points, 
which are the numeric value of the grade 
received in a course times the number of 
credit hours. 
 
e) Does not contains a constructor that is 
used when new student records are 
created. It should accept Id, name and 
major as parameters and initialize the 
fields that are used to compute the GPA to 
zero. 
 
f) Does not contains a method 
courseCompleted that accepts the course 
grade and credit hours and update the 
variables used to compute the GPA. 
 
g) courseComplete is not called when an 
Update request is made. 
 
h) Does not contains an overridden 
toString method that returns a labeled 
string containing the student name, major 



5 

i) Calculates and displays a GPA of 4.0 
for students who have not yet 
completed any course. 
 
 

and GPA. 
 
i) Does not calculate or display a GPA of 
4.0 for students who have not yet 
completed any course. 

Test Cases 10 points  
 
a) Test cases are supplied in the form 
of table with columns indicating test 
case objective, the input values, 
expected output, actual output and if 
the test case passed or failed.  
 
b) Enough scenarios selected to 
completely test the program.  
 
c) Test cases were included in the 
supporting word or PDF 
documentation.  

0 points  
 
a) No test cases were provided.  
 

Documentation and Style 
guide  
 

10 points  
 
a) Solution description document 
P4SolutionDescription includes all the 
required sections appropriate titled. 
 
Source code criteria  
 
b) Header comments include filename, 
author, date and brief purpose of the 
program.  
 
c) In-line comments used to describe 
major functionality of the code.  
 
d) Meaningful variable names and 
prompts applied.  
 
e) Class names are written in 
UpperCamelCase.  
 
f) Variable names are written in 
lowerCamelCase.  
 
g) Constant names are in written in All 
Capitals.  
 
h) Braces use K&R style.  
 
i) Declare all instance variables private.  
 
j) Avoids the duplication of code.  

0 points  
 
a) No solution description document is 
included.  
 
Source code criteria 
 
b) Java style guide was not used to 
prepare the Java code.  
 
c) All instance variables not declared 
private.  
 
d) Duplication of code was not avoided.  



6 

 


