Project 4
1. Specification

This programming project involves writing a program to manage a student database. The interface to the program
should be a Swing based GUI that looks similar to the following:

Major:

Choose Selection:

Process Request

A combo box should allow the user to select one of the four database actions shown. The database should be
implemented as a HashMap, with the Id field as the key and a Student record as the value. The selected operation
should be performed when the user clicks the Process Request button. If the user attempts to insert a key that is
already in the database an error message should be displayed using a JOptionPane message dialog box. If the user
attempts to delete, find or update a record that is not in the database, a message should also be displayed in a
JOptionPane. After each successful operation is completed a JOptionPane window should be displayed confirming
the success. In the case of a successful Find request, a window should pop up containing the student's Id, name,
major and current GPA. When the user selects the Update request, the following JOptionPane windows should be
displayed to gather information about a course that has just been completed. As a result, the Student record in
the database will be updated accordingly. User input values should be checked and a warning message should be
displayed in a JOptionPane for inappropriate values (such as empty textfields for Id, name or major).

Choose grade: ‘o | Choose credits:

ToOom>|>

When the main application window is closed, the student records from the database will be written into the text
file outData.txt, each student data (including his/her GPA) on a separate line. The last line of the file will contain
the total number of student records in the database and their average GPA value.

The program should consist of two classes.

1. The first class P4GUI should define the GUI and handle the database interactions. It should be hand-coded and
not generated by a GUI generator.



2. The second class named Student, should define the student record. The class defines the instance variables id,
name, major, totalCredits (as total number of credits completed) and totalQP (as total quality points). The quality
points for a course is calculated as the numeric value of the grade received in the course (A= 4;,B=3;C=2;D=1;
F = 0) times the number of credit hours for that course. The values of totalCredits and totalQP will be used to
calculate the GPA by dividing totalQP by totalCredits. The class Student should have the following three methods:
a. A constructor with arguments that is used when new student records are created It takes Id, name and
major as parameters and will initialize totalCredits and totalQP to zero;
b. A method courseCompleted that should accept the course grade and credit numbers and will update
the variables used to compute the GPA. It will be called when an Update request is made.
c. A method overriding toString that returns a labeled string containing the student id, name, major and
GPA.

Finally, when a student has not yet completed any course, the GPA should be displayed as 4.0.
Your program should compile without errors.

The Google recommended Java style guide (https://google.github.io/styleguide/javaguide.html) should be used to
format and document your code. Specifically, the following style guide attributes should be addressed:

e Header comments include filename, author, date and brief purpose of the program.
e In-line comments used to describe major functionality of the code.

e Meaningful variable names and prompts applied.

e (Class names are written in UpperCamelCase.

e Variable names are written in lowerCamelCase.

e Constant names are in written in All Capitals.

e Braces use K&R style.

In addition the following design constraints should be followed:

e Declare all instance variables private
e Avoid the duplication of code

Test cases should be supplied in the form of a table with columns indicating what aspect is tested, the input
values, expected output, actual output and if the test case passed or failed. This table should contain 5 columns
with appropriate labels and a row for each test case. Note that the actual output should be the actual results you
receive when running your program and applying the input for the test record. Be sure to select enough different
kinds of employees and situations to completely test the program.

2. Submission Requirements

Submit the following to the Project 2 assignment area no later than the due date listed in your LEO classroom.

1. The source files P4GUl.java and Student.java and the program generated output file outData.txt. The source
code should use Java code conventions and appropriate code layout (white space management and indents) and

comments. All submitted files may be included in a .zip file.

2. The solution description document P4SolutionDescription (.pdf or .doc / .docx) containing the following:


https://google.github.io/styleguide/javaguide.html

(1) Assumptions, main design decisions, error handling;

(2) Test cases table

(3) Screen captures showing successful program compilation and test cases execution. Each screen capture should
be properly labeled, clearly indicated what the screen capture represents.
(4) Lessons learned from the project;

3. Grading Rubric

The following grading rubric will be used to determine your grade:

Attribute

Meets

Does not meet

P4GUI class

35 points
a) Defines the GUI.

b) Provides a combo box to allow the
user to select one of the four database
actions including insert, update, delete
and find.

c) The database is implemented as a
HashMap, with the ID field as the key
and a student record as the value.

d) The operation is performed when
the user clicks the Process Request
button.

e) User input values are checked and
warning message is displayed for
inappropriate values entered in the Id,
name or major textfields.

f) If the user attempts to insert a key
that is already in the database an error
message is displayed using a
JOptionPane message dialog box.

g) If the user attempts to delete, find or
update a record that is not in the
database, a message is displayed.

h) After each successful operation is
completed a JOptionPane is displayed
confirming the success.

i) In the case of a successful Find
request, a window pops-up containing
the student's ID, name, major and
current GPA.

0 points
a) Does not defines the GUI.

b) Does not provide a combo box to allow
the user to select one of the four database
actions including insert, update, delete
and find.

c) The database is not implemented as a
HashMap, with the ID field as the key and
a student record as the value.

d) The operation is not performed when
the user clicks the Process Request
button.

e) User input values are not checked and
warning message is not displayed for
inappropriate values entered in the Id,
name or major textfields.

f) If the user attempts to insert a key that
is already in the database an error
message is not displayed using a
JOptionPane message dialog box.

g) If the user attempts to delete, find or
update a record that is not in the
database, a message is not displayed.

h) After each successful operation is
completed a JOptionPane is not displayed
confirming the success.

i) In the case of a successful Find request,
a window does not pop-up containing the
student's ID, name, major and current
GPA.




i) When the user selects the Update
request, a JOptionPane is displayed to
gather information about a course that
has just been completed including the
grade and number of credits.

k) When the window is closed, the
student records from the database are
written in a file, each student data

(including their GPA) on a separate line.

[) The last line of the file contain the
total number of student records in the
database and their average GPA value.

j) When the user selects the Update
request, a JOptionPane is not be displayed
to gather information about a course that
has just been completed including the
grade and number of credits.

k) When the window is closed, the student
records from the database are not written
in a file, each student data (including their
GPA) on a separate line.

I) The last line of the file does not contain
the total number of student records in the
database and their average GPA value

Student Class

40 points
a) Defines the student record.

b) Contains instance variables for the
student id, name, major and two
variables that are used to compute the
GPA.

c) Contains a variable representing the
total number of credits completed

d) Contains a variable representing the
total quality points, which are the
numeric value of the grade received in
a course times the number of credit
hours.

e) Contains a constructor that is used
when new student records are created.
It should accept Id, name and major as
parameters and initialize the fields that
are used to compute the GPA to zero.

f) Contains a method courseCompleted
that accepts the course grade and
credit numbers and update the
variables used to compute the GPA.

g) courseComplete is called when an
Update request is made.

h) Contains an overridden toString
method that returns a labeled string
containing the student name, major
and GPA.

0 points
a) Does not define the student record.

b) Does not contains instance variables for
the student id, name, major and two
variables that are used to compute the
GPA.

c) Does not contain a variable
representing the total number of credits
completed

d) Does not contain a variable
representing the total quality points,
which are the numeric value of the grade
received in a course times the number of
credit hours.

e) Does not contains a constructor that is
used when new student records are
created. It should accept Id, name and
major as parameters and initialize the
fields that are used to compute the GPA to
zero.

f) Does not contains a method
courseCompleted that accepts the course
grade and credit hours and update the
variables used to compute the GPA.

g) courseComplete is not called when an
Update request is made.

h) Does not contains an overridden
toString method that returns a labeled
string containing the student name, major




i) Calculates and displays a GPA of 4.0
for students who have not yet
completed any course.

and GPA.

i) Does not calculate or display a GPA of
4.0 for students who have not yet
completed any course.

Test Cases

10 points

a) Test cases are supplied in the form
of table with columns indicating test
case objective, the input values,
expected output, actual output and if
the test case passed or failed.

b) Enough scenarios selected to
completely test the program.

c) Test cases were included in the
supporting word or PDF
documentation.

0 points

a) No test cases were provided.

Documentation and Style
guide

10 points

a) Solution description document
P4SolutionDescription includes all the
required sections appropriate titled.
Source code criteria

b) Header comments include filename,
author, date and brief purpose of the

program.

c) In-line comments used to describe
major functionality of the code.

d) Meaningful variable names and
prompts applied.

e) Class names are written in
UpperCamelCase.

f) Variable names are written in
lowerCamelCase.

g) Constant names are in written in All
Capitals.

h) Braces use K&R style.

i) Declare all instance variables private.

j) Avoids the duplication of code.

0 points

a) No solution description document is
included.

Source code criteria

b) Java style guide was not used to
prepare the Java code.

c) All instance variables not declared
private.

d) Duplication of code was not avoided.

5







