//
#include "stdafx.h"
#include "MyFitter.h"

using namespace std;

MyFitter::MyFitter(int my_size) : X(my_size), Y(my_size), YFitted(my_size)
{
	double temp_digit;

	cout << "Please enter " << my_size << " x coordinates (Press Enter to validate):" << endl;
	for (int i = 0; i < my_size; i++) {
		cin >> temp_digit;
		X[i] = temp_digit;
	}
	cout << endl << endl;

	cout << "Please enter " << my_size << " y coordinates (Press Enter to validate):" << endl;
	for (int i = 0; i < my_size; i++) {
		cin >> temp_digit;
		Y[i] = temp_digit;
	}
	cout << "wtf?";
	cout << endl << endl;
}

//LinearFitter::LinearFitter(std::vector<double> x_input, std::vector<double> y_input) : X(x_input), Y(y_input)
MyFitter::MyFitter(std::vector<double> x_input, std::vector<double> y_input)
{
	X = x_input;
	Y = y_input;
}

void MyFitter::ppX()
{
	cout.precision(4); //set precision
	cout.setf(ios::fixed);

	cout << "Size of X = " << X.size() << endl;
	cout << "X = ";
	int max_display = X.size();
	if (X.size() > 10)
		max_display = 10;
	for (int i = 0; i < max_display; i++)
		cout << X[i] << " ";
	if (X.size() > 10) {
		cout << "..." << endl;
		cout << "The dataset contains more than 10 points, and the display has thus been truncated.";
	}
	cout << endl << endl;
}

void MyFitter::ppY()
{
	cout.precision(4);		//set display precision
	cout.setf(ios::fixed);

	cout << "Size of Y = " << Y.size() << endl;
	cout << "Y = ";
	int max_display = Y.size();
	if (Y.size() > 10)
		max_display = 10;
	for (int i = 0; i < max_display; i++)
		cout << Y[i] << " ";
	if (X.size() > 10) {
		cout << "..." << endl;
		cout << "The dataset contains more than 10 points, and the display has thus been truncated.";
	}
	cout << endl << endl;
}

vector<double> MyFitter::DoLinearFit()
{
	cout.precision(4);		//set display precision
	cout.setf(ios::fixed);

	int size = X.size();

	double xsum=0,x2sum=0,ysum=0,xysum=0; //variables to store sums of xi,yi,xi^2,xiyi etc
	double a, b;

	for (int i=0;i<size;i++)
	{
		xsum=xsum+X[i];				//calculate sum(xi)
		ysum=ysum+Y[i];				//calculate sum(yi)
		x2sum=x2sum+pow(X[i],2);	//calculate sum(x^2i)
		xysum=xysum+X[i]*Y[i];		//calculate sum(xi*yi)
	}
	a=(size*xysum-xsum*ysum)/(size*x2sum-xsum*xsum);	//calculate slope
	b=(x2sum*ysum-xsum*xysum)/(x2sum*size-xsum*xsum);	//calculate intercept
	
	vector<double> y_fit;
	y_fit.resize(size);

	for (int i=0;i<size;i++)
		y_fit[i]=a*X[i]+b;	//to calculate y(fitted) at given x points
	
	// Pretty print solution

	int max_display = Y.size();
	if (Y.size() > 10)
		max_display = 10;

	cout << "S.no" << setw(5) << "x" << setw(19) << "y(observed)" << setw(19) << "y(fitted)" << endl;
	cout << "---\n";
	for (int i = 0; i < max_display; i++) //print a table of x,y(obs.) and y(fit.)
		cout << i + 1 << "." << setw(8) << X[i] << setw(15) << Y[i] << setw(18) << y_fit[i] << endl;

	if (Y.size() > (size_t) max_display) {
		cout << "..." << endl;
		cout << "The dataset contains more than 10 points, and the display has thus been truncated." << endl;
	}

	cout << endl;
	cout << "The linear fit line is of the form:" << endl << endl;
	cout << "y = " << a << "x + " << b << endl; //print the best fit line

	return y_fit;
}

vector<double> MyFitter::DoPolynomialFit(int degree = 2)
{
	int n;
	cout.precision(4);		//set display precision
	cout.setf(ios::fixed);

	n = degree;
	cout << "You have asked me to find a polynomial of degree " << n << " to fit your observed data." << endl;
	cout << "Mind you that the greater the degree of the polynomial, the longer the calculations will take !!!" << endl;
	cout << "It may seem that I am stuck, but really don't stop me until I tell you that I am done." << endl;
	cout << "Also, if you select too high a degree, it may be that the compiler won't handle the required sensitivity, and return NaN numbers." << endl;
	cout << "If that's the case, try lowering the degree of the polynomial" << endl;
	
	vector<double> my_Xsums(2 * n + 1, 0);	//Array that will store the values of sum(xi),sum(xi^2),sum(xi^3)....sum(xi^2n)
	for (int i = 0; i<2 * n + 1; i++)
	{
		for (size_t j = 0; j<X.size(); j++)
			my_Xsums[i] = my_Xsums[i] + pow(X[j], i); //consecutive positions of the array will store N,sum(xi),sum(xi^2),sum(xi^3)....sum(xi^2n)
	}

	vector< vector<double> > B;
	B.resize(n + 1, vector<double>(n + 2, 0));

	for (int i = 0; i <= n; i++)
		for (int j = 0; j <= n; j++)
			B[i][j] = my_Xsums[i + j]; //Build the Normal matrix by storing the corresponding coefficients at the right positions except the last column of the matrix

	vector<double> my_Ysums(n + 1, 0);
	for (int i = 0; i<n + 1; i++)
	{
		for (size_t j = 0; j<Y.size(); j++)
			my_Ysums[i] = my_Ysums[i] + pow(X[j], i)*Y[j]; //consecutive positions will store sum(yi),sum(xi*yi),sum(xi^2*yi)...sum(xi^n*yi)
	}

	for (int i = 0; i <= n; i++)
		B[i][n + 1] = my_Ysums[i]; //load the values of Y as the last column of B(Normal Matrix but augmented)
	n = n + 1; //n is made n+1 because the Gaussian Elimination part below was for n equations, but here n is the degree of polynomial and for n degree we get n+1 equations

	int max_display = n;
	if (n > 10)
		max_display = 10;

	cout << "\nThe Normal (Augmented Matrix) is as follows:\n";
	for (int i = 0; i<max_display; i++) //print the Normal-augmented matrix
	{
		for (int j = 0; j <= max_display; j++)
			cout << B[i][j] << setw(16);
		cout << endl;
	}

	if (n > max_display) {
		cout << "..." << endl;
		cout << "The polynomial contains more than 10 parameters, and the display has thus been truncated." << endl;
	}

	//From now Gaussian Elimination starts (can be ignored) to solve the set of linear equations (Pivotisation)
	// This is the bit that could take a lot of time if the degre of the polynomial is too high

	for (int i = 0; i<n; i++)
		for (int k = i + 1; k<n; k++)
			if (B[i][i]<B[k][i])
				for (int j = 0; j <= n; j++)
				{
					double temp = B[i][j];
					B[i][j] = B[k][j];
					B[k][j] = temp;
				}

	for (int i = 0; i<n - 1; i++) //loop to perform the gauss elimination
		for (int k = i + 1; k<n; k++)
		{
			double t = B[k][i] / B[i][i];
			for (int j = 0; j <= n; j++)
				B[k][j] = B[k][j] - t*B[i][j]; //make the elements below the pivot elements equal to zero or elimnate the variables
		}

	vector<double> a(n + 1);	//B is the Normal matrix(augmented) that will store the equations, 'a' is for value of the final coefficients

	for (int i = n - 1; i >= 0; i--) //back-substitution
	{ //x is an array whose values correspond to the values of x,y,z..
		a[i] = B[i][n]; //make the variable to be calculated equal to the rhs of the last equation
		for (int j = 0; j<n; j++)
			if (j != i) //then subtract all the lhs values except the coefficient of the variable whose value is being calculated
				a[i] = a[i] - B[i][j] * a[j];
		a[i] = a[i] / B[i][i]; //now finally divide the rhs by the coefficient of the variable to be calculated
	}
	
	max_display = n;
	if (n > 10)
		max_display = 10;

	cout << "\nThe values of the coefficients are as follows:\ny = ";
	for (int i = 0; i<max_display; i++)
		cout << "x^" << i << "=" << a[i] << endl; // Print the values of x^0,x^1,x^2,x^3,....

	if (n > max_display) {
		cout << "..." << endl;
		cout << "The polynomial contains more than 10 parameters, and the display has thus been truncated." << endl;
	}

	cout << "\nHence the fitted Polynomial is given by:\ny=";
	for (int i = 0; i<max_display; i++)
		cout << " + (" << a[i] << ")" << "x^" << i;
	cout << "\n";
	if (n > max_display) {
		cout << "..." << endl;
		cout << "The polynomial contains more than 10 parameters, and the display has thus been truncated." << endl;
	}

	// We are almost done, now we need to output the fitted data...

	vector<double> y_fit(X.size(), 0);
	for (size_t i = 0; i < X.size(); i++)
		for (size_t j = 0; j < a.size(); j++)
			y_fit[i] = y_fit[i] + a[j] * pow(X[i], j);

	return y_fit;
}

