modify the code to save the permit data to a disk file. Here is the overview
Modify your “data tier” by adding a new “DiskStore” static class inside the DataAccessTier project. This new class will be called only by the PermitData class. It should expose 2 methods
1) WriteStringArray, which takes in a 2 dimensional string array and writes it’s data to the disk
2) ReadStringArray, which reads the same disk file, creates a 2 dimensional string array, reads the data from the file and puts it in the array, and returns it. We will use this “utility” to save and restore our data.

· Then you will modify the PermitData class to have this behavior;
1. Whenever the PermitData gets a call to add a new entry to the “fake db” (the array),
· it first calls the this new ReadStringArray method to get the current values from disk into its in memory array,
· then, after getting the current data into the array, it updates that array to add the new person’s permit data (as the code already does).
· then it calls the new WriteStringArray method , passing to that method the updated array, to save it to disk with the freshly updated data.
2. Whenever a report is asked for, the data tier uses this very same new ReadStringArray method to get the current version from disk and then it simply returns that to the middle tier. The middle tier already knows how to pass that data back to the UI tier.
It’s fine that the array is a fixed size, to only hold 10 data rows, and the code that reads and writes the string data can also assume a fixed number of rows (10) and columns(3). So you can hard code those values in any and all arrays and loops you use.
You should not change anything in the UI (Console) layer nor in the Middle, Business Tier layer. If you think you need to, stop – you are making a mistake.
======================== ADVICE ============================
start by just creating this new public static class in the DataAccessTier: right click on that project, select add, select class, pick class, and name it DiskStore.cs That will create a new file for this new class, but not a new project.

· In this new DisktStore class definition, add a new public static method WriteStringArray definition that accepts a 2 dimensional string array as a parameter and writes the data from the array to this disk, just as we did in the ReadWriteStringArray project. It does not return anything.

· In the same DisktStore class, add a 2nd new public static method ReadStringArray definition that returns a 2 dimensional string array, but takes in no parameters.
· Again look at the code in the ReadWriteStringArray program we went over in class, and figure out how, in the new ReadStringArray method in the DiskStore Class, to read the file you wrote, and then in a loop, stuff the array you created there with those values from the file data.

· Now Modify the existing Save method in the PermitData class, such that
· AFTER it updates the array when it adds a new permit, but just before it does the return,
· Add a new call to that new DiskStore.WriteStringArray method and pass in the array it uses (fakeDB). Again, make sure the program still works as before. While you are making a new method call and passing the data array, since you don’t read it back yet, this change should not break the existing functionality of the program. Make sure the program still can add permits and read back a report of them all. But also, using Notepad, look at your new file on disk and see if it is saving permit data onto the disk. Get this working before moving on.

· CAUTION From this point forward, every time you restart your program, always start by adding at least one permit before doing the report of all permits. The p command causes a new file to be created should it not exist, whereas the r command tries to read a file which might not exist if you didn’t do the p command first.

· Only when that all works, move on to modify your GetApplications() method in the PermitData class, by adding a call to the new ReadStringArray method, just before the return fakeDB line.
· Now further modify that GetApplications() code to return to the UI layer the array you get back from that call you just added, DiskStore.ReadStringArray();
· Do this by just putting a return in front of it: return DiskStore.ReadStringArray(); And get rid of the return fakeDB call that is there now. So now you are not returning the data in the fakeDB array, you are returning the array from the new method all the way back to the UI layer. Run your program. Again, verify that you can add permits and then get a report, but now the data showing in the report is coming all the way from your disk.

===
At this point
> You are saving the data in a file,
> and you are able to retrieve it from the file.
But, if you stop the program, and restart it, the prior data in not in your fakeDB and the index pointer will be pointing to array element 0.
==
>> So first, deal with the index, (inside of the PermitData.Save method) which in the prior version of the program was stored as a variable, but when we stop and start the program, that value will be lost. So every time we call our new file read method to load the fakeDB array, we must re-calculate the index again, instead of just reading it from a stored value. So at the top of this method, just after a few variable definitions, modify the existing code to look thru the fakeDB array and find the first empty row, and that should set the value of the index pointer. Here is a code snippet to help you.
index = 0; //set the index back to 0, and now figure out what it should be
for (int i = 0; i < 10; i++) // find the first empty slot, and set index to point to it
{
 if (fakeDB[i, 0] == null)
 {
 break; //if the file has never been written to, value may be null
 }
 else if (fakeDB[i, 0].Length <2)
 {
 break; //or maybe its an emptry string, like ""
 }
 else
	{
 index = index + 1; // bump up the index until we find an empty row

	}
}

Test your program, it should still work correctly, adding more permits and reading them with the r command.

But note, if you encounter an error, the way the program is (poorly) coded now, if you have an error in either the Save method in PermitData class or the WriteStringArray method in the DiskStore class, you will get the "Sorry, database problem."; message, so don’t be fooled by that, use breakpoints to see what’s going on and where the problem is if it is not working.

>> Lastly, whenever we are adding a new permit, we should read the existing data from disk and make sure our fakeDB has the latest data before updating the array. That way if we stop the program and restart it, our old data is not lost or overwritten.
So modify the PermitData Save method to start off, again at the top after a few variable definitions but before the new code that calculates the index, by doing a
fakeDB = DiskStore.ReadStringArray();
This should call your new method and retrieve the file from disk, and load the file data into the fakeDB
At this point, everything should work, and you should be able to add a few names, stop the program, start it again, and run a report and see the names still there.

Verify the code works holding up to 10 names, and that it fails correctly when you try and give it the 11th one.
[bookmark: _GoBack]
