
MATH 210 Assignment 3
More Logic, Loops and Functions

INSTRUCTIONS

◦ Create a new Python 3 Jupyter notebook

◦ Answer each question in the Jupyter notebook and clearly label the solutions with headings

◦ Functions should include documentation strings and comments

◦ There are 15 total points and each question is worth 3 points

◦ Submit the .ipynb file to Connect by 11pm Monday, January 30, 2017

◦ You may work on these problems with others but you must write your solutions on your own

◦ Do not import any Python packages such as math or numpy to complete this assignment.
These questions require only the standard Python library. Solutions will be given 0 if any
Python package/module is used.

QUESTIONS

1. Write a function called prime_divisors which takes one input parameter N (a positive
integer) and returns a Python list of prime numbers which divide N . For example:

prime_divisors(21) returns [3,7]

prime_divisors(24) returns [2,3]

prime_divisors(1815) returns [3,5,11]

2. Write a function called prime_factorization which takes one input parameter N (a positive
integer) and returns a Python list of tuples [(p1, n1), . . . , (pm, nm)] which gives the factoriza-
tion of N into primes:

N = pn1
1 pn2

2 · · · p
nm
m

For example:

prime_factorization(21) returns [(3,1),(7,1)] since 21 = 31 · 71

prime_factorization(24) returns [(2,3),(3,1)] since 24 = 23 · 31

prime_factorization(1815) returns [(3,1),(5,1),(11,2)] since 1815 = 31 · 51 · 112



3. Given a finite sequence of positive integers [a0, a1, . . . , an] (of length n+1), define a new finite
sequence [b0, b1, . . . , bn] (defined recursively) by

b0 = a0

b1 = a1 +
1

b0
= a1 +

1

a0

b2 = a2 +
1

b1
= a2 +

1

a1 + 1
a0

b3 = a3 +
1

b2
= a3 +

1

a2 + 1
a1+

1
a0

...

bn = an +
1

bn−1
= an +

1

. . . + 1
a0

Write a function called sequence_to_fraction which takes one input parameter integer_list
(a Python list of positive integers [a0, a1, . . . , an]) and returns the last number bn in the se-
quence defined above

bn = an +
1

an−1 + 1

. . .+ 1
a0

For example:

sequence_to_fraction([1,1]) returns 2.0

sequence_to_fraction([1,1,1,1,1,1,1,1,1,1,1]) returns 1.6179775280898876

sequence_to_fraction([6,1,1,4,1,1,2,1,2]) returns 2.718279569892473

sequence_to_fraction([2,1,1,1,292,1,15,7,3]) returns 3.141592653581078

4. Define a function called product which takes a Python list of numbers and returns the product
of the numbers in the list. For example:

product([1,2,3,4]) returns 24

product([2,3,5,7,11,13]) returns 30030

product([0.5,0.25,0.125]) returns 0.015625

5. Write a function called sequence_to_roots which takes one input parameter integer_list
(a Python list of positive integers [a0, a1, . . . , an]) and returns the number√

an +

√
an−1 +

√
· · ·+

√
a0

For example:

sequence_to_roots([1,1]) returns 1.4142135623730951 (ie.
√

1 +
√

1)

sequence_to_roots([2,2,2,2,2]) returns 1.9975909124103448 (ie.

√
2 +

√
2 +

√
2 +

√
2 +
√

2)

sequence_to_roots([1,2,3]) returns 2.1753277471610746 (ie.

√
3 +

√
2 +
√

1)


