
CSCI 1301: Introduction to Computing and Programming  Fall 2016 
Lab 13 – Method Overloading; One-Dimensional Arrays 
	

Part 1: Group Brainstorm (NO computers during this time) 
Good programmers think before they begin coding. Part I of this assignment involves brainstorming with 
a group of peers with absolutely no computers to talk about a strategy for solving this week’s lab. 
Breakup into groups based on your seating (3-4 people per group) and brainstorm about how to solve the 
problem in Part 2 below. Make sure everyone understands the problem and sketch out potential ways to 
move toward a solution.  Write up a detailed description of your approach in English / pseudocode 
(English that is structured like a program).  This should be 1-2 paragraphs in length (enough to convince 
the grader that you have a plan for moving toward a solution).  You may find it helpful to look over the 
required readings for this week. Make sure to get the last names of those you have worked with – you will 
need to provide it in your write-up for Part 2.  
 
Include in your write-up which course topics you think will be useful for the lab and a detailed plan for 
completing the exercise & answer the following questions:  

• Discuss how you will implement the new methods (on pg. 3 of this document). 

Part 2: Submit Individual Brainstorm (You can now use a computer) 
Login to eLC and submit a version of your group's brainstorm, written in your own words under the 
Assignment Dropbox titled “Lab 13 Brainstorm”. *Note this is different than the Lab 13 Dropbox where 
you will submit your .java file for this assignment. Feel free to add any additional information that was 
not specified to your write-up. We prefer that you submit the brainstorm before the end of the first lab 
period for the week.  However, you can submit until Tuesday night at 9PM. 
 
Note: Brainstorms that are submitted without a student attending the lab will not be 
graded unless the student provides a documented excuse to the graduate TA. 

Introduction	
This lab focuses on method overloading and also gives you further practice working with some subtleties 
of one-dimensional arrays. In it, you will modify the Stat class created in Lab 12, expanding its 
functionality. If you recall, that class stored an array of double values and computed the minimum, 
maximum, mode, and average of these values. There were also methods for getting and setting the array 
of values. In particular, there was a method called setData which used a double array as its single 
parameter, and it copied the values from that array to the underlying data array of the Stat object.  
 
In this lab, you will overload the setData  method (and the class constructors as well), creating versions 
that use arrays of int, long, and float values as parameters and handles null parameters properly 
(i.e. runtime errors should not occur when a parameter is null). A double array will still be used 
internally by the Stat class to store the values.  You will also define an additional set of methods, all 
called append, to add new values to the underlying data array. 
 
 
 
 
 
 



CSCI 1301: Introduction to Computing and Programming  Fall 2016 
Lab 13 – Method Overloading; One-Dimensional Arrays 
	

Important note about this lab 
If you completed the previous Stat lab, then you may reuse your own source code from 
that lab for this lab. However, if you did NOT complete the previous Stat lab, then you 
will need to do additional work to complete all of the methods in this lab. Source code 
from the previous Stat lab will NOT be provided, and you are NOT permitted to ask 
other students for any code associated with this lab or the previous Stat lab. 

 
It is important to note that the automatic type conversion of primitive data types that can occur during 
method calls does not apply to arrays of primitive data types. And so, while it is perfectly possible to 
define a method having formal parameters that are double values and then invoke that method using 
int values, it is not possible to automatically convert, for instance, an int array to a double array.  
Automatic type conversion can be performed on individual elements of arrays but not on the arrays 
themselves. 
 
In the lab, you will also modify the code of the Stat class to allow a data array of 0 elements. It is 
perfectly possible to create an array of length 0 in Java, and having a variable hold a reference to an array 
of length 0 is in many ways preferable to simply assigning null to the variable (it avoids so-called null 
pointer exceptions, for instance).  
 
Using zero-length arrays requires altering the methods of the Stat class that were defined in Lab 12. 
E.g., an empty array has no minimum or maximum value, and so we modify the methods min and max to 
return Double.NaN  (which represents “Not a Number”) in those cases. Other adjustments in the same 
vein are needed throughout the modified program.  
 
The class will also be modified in this lab to handle methods invoked with null as a parameter.  
Specifically, you will need to modify several of the methods to check that the value passed to them is not 
null. In part, this is done to ensure that calculations are never performed on null values (this makes your 
program more robust). 
 
As part of the lab, you will also implement methods to compute the variance and standard deviation of the 
stored data values. 
 
It is important to note that if done somewhat naively, your finished program might contain a significant 
amount of redundant code. Such redundancy should in general be avoided, as it is ultimately more 
difficult to maintain, and it increases the chances of an error occurring in your program. Because of this, 
you should attempt to identify tasks in your program that need to be performed often and then defining a 
method to perform that task. Once done, other methods can be implemented to make use of it.  
 

Lab Objectives 
By the end of the lab, you should be able to create classes utilizing:  constructors; access modifiers; 
instance variables; void methods and methods which return values; accessor and mutator methods (getters 
and setters) methods; methods calling other methods; method	overloading. 

You	 should	 have	 also	 gained	 further	 experience	working	with	 one-dimensional	 arrays	 (including	
empty	arrays)	of	various	data	types.		

Prerequisites 
The lab deals with material from Chapter 5, 6, and 7.  



CSCI 1301: Introduction to Computing and Programming  Fall 2016 
Lab 13 – Method Overloading; One-Dimensional Arrays 
	
What to Submit 
The	modified	Stat.java	file should be submitted to eLC for grading (you should keep a copy of the 
original). 

Instructions	
Use the UML diagram and method descriptions below to create your modified Stat class. In the 
diagram, methods not defined in Lab 12 are shown in red. Observe that in many cases, previously existing 
methods require alteration.  
 

 Stat 
 
- data: double[] 
 
 
1. + Stat() 
2. + Stat(double[] d) 
3. + Stat(float[] f) 
4. + Stat(int[] i) 
5. + Stat(long[] lo) 
6. + setData(float[] f): void 
7. + setData(double[] d): void 
8. + setData(int[] i): void 
9. + setData(long[] lo): void 
10. + getData(): double[] 
11. + equals(Stat s): boolean 
12. + reset(): void 
13. + append(int[] i): void 
14. + append(float[] f): void 
15. + append(long[] lo): void 
16. + append(double[] d): void 
17. + isEmpty(): boolean 
18. + toString(): String 
19. + min(): double 
20. + max(): double 
21. + average(): double 
22. + mode(): double 
23. - occursNumberOfTimes(double value): int 
24. + variance(): double 
25. + standardDeviation: double 

 

Method Descriptions: 

• (1) Stat()—The default constructor for Stat. It should create a double array having length 0. 
• (2,3,4,5) Stat(double[] d), Stat(int[] i), Stat(long[] lo),  

Stat(float[] f) — Constructs a Stat object using the values held in the parameter array.  
Invoking the constructor should create a double array of the same length as the parameter array and 
holding copies of its values. A reference to this new array should be assigned to data.  
Note that if the parameter is null, then an empty array should instead be assigned to data. 



CSCI 1301: Introduction to Computing and Programming  Fall 2016 
Lab 13 – Method Overloading; One-Dimensional Arrays 
	
• (6,7,8,9) setData(double[] d), setData(int[] i), setData(long[] lo),  

setData(float[] f) — As in Lab 12, these methods are used to set the values of the data 
array. Here, if the array used as parameter is not null, then each of these methods should create a 
new double array containing exactly the elements of the parameter array. A reference to this new 
array is assigned to data. If the parameter is null, however, then an empty array should instead be 
assigned to data. 

• (10) getData()—This method is left unchanged from Lab 12. It should create a new array 
containing exactly the values contained in data and return a reference to this new array. This should 
happen even if data is an empty array (has length 0).  

• (11) equals(Stat s) — Unchanged from Lab 12. The method returns true if the data 
arrays of both objects, the calling Stat object and the passed Stat object s, have the same values 
(and in the same order). Otherwise, it returns false. If the parameter s is null, the method returns 
false. 

• (12) reset():  This clears the data array. A new empty double array is created and assigned to 
data. 

• (13,14,15,16) append(double[] d), append(int[] i), append(long[] lo), 
append(float[] f) —These methods should create a new double array containing exactly those 
elements of data followed by those of the array passed as parameter. A reference to this array 
should be assigned to data.  If the parameter is null, then the method should do nothing (no new 
array created).  

• (17) isEmpty()— returns the boolean value true if the data object is empty (has length 0). 
Otherwise, it returns false.  

• (18) toString()—As in Lab 12, this method returns a String representation of the data 
elements, if any, stored in the Stat object. See the examples below for the correct format.  

• (19) min()—Returns the minimum of the data array. If the array is empty, then it should return 
Double.NaN. 

• (20) max()—Returns the maximum of the data array. If the array is empty, then it should 
return Double.NaN. 

• (21) average()—Returns the average or mean of the values in the data array. If data is an 
empty array, then the method should return Double.NaN. 

• (22) mode()— The mode is the value that occurs most frequently in a collection of values. In the 
Stat class, if one value occurs more frequently in data than all others, then mode() should return 
this value. If there is no such unique value, or if the data array is empty, mode() should return 
Double.NaN.   

• (23) occursNumberOfTimes(double value) — Returns the number of times the value 
occurs in the data array. This is a private helper method for the mode() method, and its 
implementation is optional, but excellent practice decomposing the  mode() method. 

• (24) variance()— Returns the variance of the data in the data array.  To compute this, find 
the difference between the value of each element of the data array and the mean, square this distance, 
and then sum these squared values. The variance is this sum divided by the number of elements in 
data. 
Note that if the data array is empty, then Double.NaN should be returned.  

• (25) standardDeviation(): Returns the square root of the variance.  If the data array is 
empty, then  Double.NaN should be returned. 

 



CSCI 1301: Introduction to Computing and Programming  Fall 2016 
Lab 13 – Method Overloading; One-Dimensional Arrays 
	
eLC Submission and Grading 
After you have completed and thoroughly tested your program, upload Stat.java to eLC. Always 
double check that your submission was successful on eLC! 
 
The lab will be graded according to the following guidelines.  
 

• A score between 0 and 100 will be assigned.  
• If the source file(s) are not submitted before the specified deadline’s late period ends (48 hours 

after the deadline), or if they do not compile.  
• The program will be evaluated using a separate testing file. Multiple instances of the Stat class 

will be created and their methods invoked. 

Examples	
 
Example 1  
 
Example main method: 
 
double[]	data1	=	{};	
Stat	stat1	=	new	Stat(data1);	
System.out.println("stat1	data	=	"	+	stat1.toString());	
System.out.println("stat1	min	=	"	+	stat1.min());	
System.out.println("stat1	max	=	"	+	stat1.max());	
System.out.println("stat1	average	=	"	+	stat1.average());	
System.out.println("stat1	mode	=	"	+	stat1.mode());	
System.out.println("stat1	variance	=	"	+	stat1.variance());	
System.out.println("stat1	standard	deviation	=	"	+	stat1.standardDeviation());	
System.out.println("stat1	is	empty	=	"	+	stat1.isEmpty()	+	"\n");	
	
	
Example output: 
	
stat1	data	=	[]	
stat1	min	=	NaN	
stat1	max	=	NaN	
stat1	average	=	NaN	
stat1	mode	=	NaN	
stat1	variance	=	NaN	
stat1	standard	deviation	=	NaN	
stat1	is	empty	=	true	
 
Example 2  
 
Example main method: 
 
double[]	data1	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9	};	
Stat	stat1	=	new	Stat(data1);	
System.out.println("stat1	data	=	"	+	stat1.toString());	
System.out.println("stat1	min	=	"	+	stat1.min());	



CSCI 1301: Introduction to Computing and Programming  Fall 2016 
Lab 13 – Method Overloading; One-Dimensional Arrays 
	
System.out.println("stat1	max	=	"	+	stat1.max());	
System.out.println("stat1	average	=	"	+	stat1.average());	
System.out.println("stat1	mode	=	"	+	stat1.mode());	
System.out.println("stat1	variance	=	"	+	stat1.variance());	
System.out.println("stat1	standard	deviation	=	"	+	stat1.standardDeviation());	
System.out.println("stat1	is	empty	=	"	+	stat1.isEmpty()	+	"\n");	
	
stat1.reset();	
System.out.println("stat1	data	=	"	+	stat1.toString());	
System.out.println("stat1	min	=	"	+	stat1.min());	
System.out.println("stat1	max	=	"	+	stat1.max());	
System.out.println("stat1	average	=	"	+	stat1.average());	
System.out.println("stat1	mode	=	"	+	stat1.mode());	
System.out.println("stat1	variance	=	"	+	stat1.variance());	
System.out.println("stat1	standard	deviation	=	"	+	stat1.standardDeviation());	
System.out.println("stat1	is	empty	=	"	+	stat1.isEmpty()	+	"\n");	
	
	
Example output: 
	
stat1	data	=	[1.0,	2.0,	3.0,	4.0,	5.0,	6.0,	7.0,	8.0,	9.0]	
stat1	min	=	1.0	
stat1	max	=	9.0	
stat1	average	=	5.0	
stat1	mode	=	NaN	
stat1	variance	=	6.666666666666667	
stat1	standard	deviation	=	2.581988897471611	
stat1	is	empty	=	false	
	
stat1	data	=	[]	
stat1	min	=	NaN	
stat1	max	=	NaN	
stat1	average	=	NaN	
stat1	mode	=	NaN	
stat1	variance	=	NaN	
stat1	standard	deviation	=	NaN	
stat1	is	empty	=	true	
	
Example 3  
 
Example main method: 
	 	 	
float[]	data1	=	{10.0F,10.0F};	
Stat	stat1	=	new	Stat(data1);	
System.out.println("stat1	data	=	"	+	stat1.toString());	
System.out.println("stat1	min	=	"	+	stat1.min());	
System.out.println("stat1	max	=	"	+	stat1.max());	
System.out.println("stat1	average	=	"	+	stat1.average());	
System.out.println("stat1	mode	=	"	+	stat1.mode());	
System.out.println("stat1	variance	=	"	+	stat1.variance());	
System.out.println("stat1	standard	deviation	=	"	+	stat1.standardDeviation()	+	"\n");	
	 	 	
long[]	data2	=	{80L,	60L};	
	 	 	



CSCI 1301: Introduction to Computing and Programming  Fall 2016 
Lab 13 – Method Overloading; One-Dimensional Arrays 
	
stat1.append(data2);	
	 	 	
System.out.println("stat1	data	=	"	+	stat1.toString());	
System.out.println("stat1	min	=	"	+	stat1.min());	
System.out.println("stat1	max	=	"	+	stat1.max());	
System.out.println("stat1	average	=	"	+	stat1.average());	
System.out.println("stat1	mode	=	"	+	stat1.mode());	
System.out.println("stat1	variance	=	"	+	stat1.variance());	
System.out.println("stat1	standard	deviation	=	"	+	stat1.standardDeviation()	+	"\n");	
	
Example output: 
	
stat1	data	=	[10.0,	10.0]	
stat1	min	=	10.0	
stat1	max	=	10.0	
stat1	average	=	10.0	
stat1	mode	=	10.0	
stat1	variance	=	0.0	
stat1	standard	deviation	=	0.0	
	
stat1	data	=	[10.0,	10.0,	80.0,	60.0]	
stat1	min	=	10.0	
stat1	max	=	80.0	
stat1	average	=	40.0	
stat1	mode	=	10.0	
stat1	variance	=	950.0	
stat1	standard	deviation	=	30.822070014844883	
	
Example 4  
 
Example main method: 
 
double[]	data	=	{-5.3,	2.5,	88.9,	0,	0.0,	28,	16.5,	88.9,	109.5,	-90,	88.9};	
Stat	stat1	=	new	Stat();	
	 	 	 	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
	 	 	 	 	
stat1.append(data);	
	 	 	 	
System.out.println("stat1	has	been	altered.");	
	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
System.out.println("stat1	min	=	"	+	stat1.min());	
System.out.println("stat1	max	=	"	+	stat1.max());	
System.out.println("stat1	average	=	"	+	stat1.average());	
System.out.println("stat1	mode	=	"	+	stat1.mode());	
System.out.println("stat1	variance	=	"	+	stat1.variance());	
System.out.println("stat1	standard	deviation	=	"	+	stat1.standardDeviation()	+	"\n");	
	
Example output: 
	
stat1	data	=	[]	
stat1	has	been	altered.	



CSCI 1301: Introduction to Computing and Programming  Fall 2016 
Lab 13 – Method Overloading; One-Dimensional Arrays 
	
stat1	data	=	[-5.3,	2.5,	88.9,	0.0,	0.0,	28.0,	16.5,	88.9,	109.5,	-90.0,	88.9]	
stat1	min	=	-90.0	
stat1	max	=	109.5	
stat1	average	=	29.80909090909091	
stat1	mode	=	88.9	
stat1	variance	=	3192.369917355372	
stat1	standard	deviation	=	56.50106120556827	
	
Example 5  
 
Example main method: 
 
double[]	data1	=	{50.0,	60.0};	
float[]		data2	=	{70.0F,	80.0F};	
int[]				data3	=	{90,	100};	
long[]				data4	=	{100L,	110L};	
	 	
Stat	stat1	=	new	Stat();	
System.out.println("stat1	data	=	"	+		 stat1.toString());	 	 	 	 	
stat1.setData(data1);	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
stat1.setData(data2);	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
stat1.setData(data3);	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
stat1.setData(data4);	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
data1	=	null;	
stat1.setData(data1);	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
	
Example output: 
	
stat1	data	=	[]	
stat1	data	=	[50.0,	60.0]	
stat1	data	=	[70.0,	80.0]	
stat1	data	=	[90.0,	100.0]	
stat1	data	=	[100.0,	110.0]	
stat1	data	=	[]	
	
Example 6  
 
Example main method: 
 
double[]	data1	=	{50.0,	60.0};	
float[]		data2	=	{70.0F,	80.0F};	
int[]				data3	=	{90,	100};	
long[]				data4	=	{100L,	110L};	 	
Stat	stat1	=	new	Stat();	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
stat1.append(data1);	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
stat1.append(data2);	



CSCI 1301: Introduction to Computing and Programming  Fall 2016 
Lab 13 – Method Overloading; One-Dimensional Arrays 
	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
stat1.append(data3);	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
stat1.append(data4);	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
data1	=	null;	
stat1.append(data1);	
	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
System.out.println("stat1	min	=	"	+	stat1.min());	
System.out.println("stat1	max	=	"	+	stat1.max());	
System.out.println("stat1	average	=	"	+	stat1.average());	
System.out.println("stat1	mode	=	"	+	stat1.mode());	
System.out.println("stat1	variance	=	"	+	stat1.variance());	
System.out.println("stat1	standard	deviation	=	"	+	stat1.standardDeviation()	+	"\n");	
	
Example output: 
	
stat1	data	=	[]	
stat1	data	=	[50.0,	60.0]	
stat1	data	=	[50.0,	60.0,	70.0,	80.0]	
stat1	data	=	[50.0,	60.0,	70.0,	80.0,	90.0,	100.0]	
stat1	data	=	[50.0,	60.0,	70.0,	80.0,	90.0,	100.0,	100.0,	110.0]	
stat1	data	=	[50.0,	60.0,	70.0,	80.0,	90.0,	100.0,	100.0,	110.0]	
stat1	min	=	50.0	
stat1	max	=	110.0	
stat1	average	=	82.5	
stat1	mode	=	100.0	
stat1	variance	=	393.75	
stat1	standard	deviation	=	19.84313483298443	
	
Example 7  
 
Example main method: 
	
double[]	data1	=	{10,10};	
int[]	data2	=	{10,10};	
Stat	stat1	=	new	Stat(data1);	
Stat	stat2	=	new	Stat(data2);	
Stat	stat3	=	new	Stat();	 	
Stat	stat4	=	null;	
System.out.println("stat1	data	=	"	+		 stat1.toString());	
System.out.println("stat2	data	=	"	+		 stat2.toString());	
System.out.println("stat2	data	=	"	+		 stat2.toString());	
System.out.println("stat1	equals	stat2	=	"	+		stat1.equals(stat2));	
System.out.println("stat1	equals	stat3	=	"	+		stat1.equals(stat3));	
System.out.println("stat1	equals	stat4	=	"	+		stat1.equals(stat4));	
	
Example output: 
	
stat1	data	=	[10.0,	10.0]	
stat2	data	=	[10.0,	10.0]	
stat2	data	=	[10.0,	10.0]	



CSCI 1301: Introduction to Computing and Programming  Fall 2016 
Lab 13 – Method Overloading; One-Dimensional Arrays 
	
stat1	equals	stat2	=	true	
stat1	equals	stat3	=	false	
stat1	equals	stat4	=	false	
	
Example 8  
 
Example main method: 
	
double[]	data1	=	{};	
double[]	data2	=	{	25	};	
float[]	data3	=	{};	
float[]	data4	=	{	25	};	
int[]	data5	=	{};	
int[]	data6	=	{	50	};	
long[]	data7	=	{};	
long[]	data8	=	{	12	};	
	
Stat	stat1	=	new	Stat();	
stat1.append(data1);	
stat1.append(data2);	
stat1.append(data3);	
stat1.append(data4);	
stat1.append(data5);	
stat1.append(data6);	
stat1.append(data7);	
stat1.append(data8);	
data1	=	null;	
stat1.append(data1);	
	
System.out.println("stat1	data	=	"	+	stat1.toString());	
System.out.println("stat1	min	=	"	+	stat1.min());	
System.out.println("stat1	max	=	"	+	stat1.max());	
System.out.println("stat1	average	=	"	+	stat1.average());	
System.out.println("stat1	mode	=	"	+	stat1.mode());	
System.out.println("stat1	variance	=	"	+	stat1.variance());	
System.out.println("stat1	standard	deviation	=	"	+	stat1.standardDeviation()	+	"\n");	
	
Example output: 
	
stat1	data	=	[25.0,	25.0,	50.0,	12.0]	
stat1	min	=	12.0	
stat1	max	=	50.0	
stat1	average	=	28.0	
stat1	mode	=	25.0	
stat1	variance	=	189.5	
stat1	standard	deviation	=	13.765899897936205	


