CSCI 1301: Introduction to Computing and Programming Fall 2016

Lab 13 — Method Overloading; One-Dimensional Arrays

Part 1: Group Brainstorm (NO computers during this time)

Good programmers think before they begin coding. Part I of this assignment involves brainstorming with
a group of peers with absolutely no computers to talk about a strategy for solving this week’s lab.
Breakup into groups based on your seating (3-4 people per group) and brainstorm about how to solve the
problem in Part 2 below. Make sure everyone understands the problem and sketch out potential ways to
move toward a solution. Write up a detailed description of your approach in English / pseudocode
(English that is structured like a program). This should be 1-2 paragraphs in length (enough to convince
the grader that you have a plan for moving toward a solution). You may find it helpful to look over the
required readings for this week. Make sure to get the last names of those you have worked with — you will
need to provide it in your write-up for Part 2.

Include in your write-up which course topics you think will be useful for the lab and a detailed plan for
completing the exercise & answer the following questions:
* Discuss how you will implement the new methods (on pg. 3 of this document).

Part 2: Submit Individual Brainstorm (You can now use a computer)

Login to eLC and submit a version of your group's brainstorm, written in your own words under the
Assignment Dropbox titled “Lab 13 Brainstorm”. *Note this is different than the Lab 13 Dropbox where
you will submit your .java file for this assignment. Feel free to add any additional information that was
not specified to your write-up. We prefer that you submit the brainstorm before the end of the first lab
period for the week. However, you can submit until Tuesday night at 9PM.

Note: Brainstorms that are submitted without a student attending the lab will not be
graded unless the student provides a documented excuse to the graduate TA.

Introduction

This lab focuses on method overloading and also gives you further practice working with some subtleties
of one-dimensional arrays. In it, you will modify the Stat class created in Lab 12, expanding its
functionality. If you recall, that class stored an array of double values and computed the minimum,
maximum, mode, and average of these values. There were also methods for getting and setting the array
of values. In particular, there was a method called setData which used a double array as its single
parameter, and it copied the values from that array to the underlying data array of the Stat object.

In this lab, you will overload the setData method (and the class constructors as well), creating versions
that use arrays of int, long, and float values as parameters and handles null parameters properly
(i.e. runtime errors should not occur when a parameter is null). A double array will still be used
internally by the Stat class to store the values. You will also define an additional set of methods, all
called append, to add new values to the underlying data array.

CSCI 1301: Introduction to Computing and Programming Fall 2016

Lab 13 — Method Overloading; One-Dimensional Arrays

Important note about this lab
If you completed the previous Stat lab, then you may reuse your own source code from
that lab for this lab. However, if you did NOT complete the previous Stat lab, then you
will need to do additional work to complete all of the methods in this lab. Source code
from the previous Stat lab will NOT be provided, and you are NOT permitted to ask
other students for any code associated with this lab or the previous Stat lab.

It is important to note that the automatic type conversion of primitive data types that can occur during
method calls does not apply to arrays of primitive data types. And so, while it is perfectly possible to
define a method having formal parameters that are double values and then invoke that method using
int values, it is not possible to automatically convert, for instance, an int array to a double array.
Automatic type conversion can be performed on individual elements of arrays but not on the arrays
themselves.

In the lab, you will also modify the code of the Stat class to allow a data array of 0 elements. It is
perfectly possible to create an array of length 0 in Java, and having a variable hold a reference to an array
of length 0 is in many ways preferable to simply assigning null to the variable (it avoids so-called null
pointer exceptions, for instance).

Using zero-length arrays requires altering the methods of the Stat class that were defined in Lab 12.
E.g., an empty array has no minimum or maximum value, and so we modify the methods min and max to
return Double .NaN (which represents “Not a Number”) in those cases. Other adjustments in the same
vein are needed throughout the modified program.

The class will also be modified in this lab to handle methods invoked with null as a parameter.
Specifically, you will need to modify several of the methods to check that the value passed to them is not
null. In part, this is done to ensure that calculations are never performed on null values (this makes your
program more robust).

As part of the lab, you will also implement methods to compute the variance and standard deviation of the
stored data values.

It is important to note that if done somewhat naively, your finished program might contain a significant
amount of redundant code. Such redundancy should in general be avoided, as it is ultimately more
difficult to maintain, and it increases the chances of an error occurring in your program. Because of this,
you should attempt to identify tasks in your program that need to be performed often and then defining a
method to perform that task. Once done, other methods can be implemented to make use of it.

Lab Objectives

By the end of the lab, you should be able to create classes utilizing: constructors; access modifiers;
instance variables; void methods and methods which return values; accessor and mutator methods (getters
and setters) methods; methods calling other methods; method overloading.

You should have also gained further experience working with one-dimensional arrays (including
empty arrays) of various data types.

Prerequisites
The lab deals with material from Chapter 5, 6, and 7.

CSCI 1301: Introduction to Computing and Programming

Fall 2016

Lab 13 — Method Overloading; One-Dimensional Arrays

What to Submit

The modified Stat. java file should be submitted to eL.C for grading (you should keep a copy of the

original).

Instructions

Use the UML diagram and method descriptions below to create your modified Stat class. In the
diagram, methods not defined in Lab 12 are shown in red. Observe that in many cases, previously existing

methods require alteration.

Stat
- data: double]]
1. + Stat()
2. + Stat (double[] d)
3. + Stat(float[] £f)
4. + Stat(int[] i)
5. + Stat(long[] 1lo)
6. + setData(float[] f): void
7. + setData(double[] d): void
8. + setData(int[] i): wvoid
9. + setData(long[] 1lo): void

10. +

getData () : double[]
11. + equals (Stat s): boolean
12. + reset(): void
13. + append(int[] i): wvoid
14. + append (float[] f): void
15. + append(long[] 1lo): void
16. + append (double[] d): void
17 + isEmpty () : boolean
18. + toString(): String
19. + min() : double
20 + max () : double
21. + average () : double
22. + mode () : double
23. - occursNumberOfTimes (double wvalue): int
24 . + variance () : double
25. + standardDeviation: double

Method Descriptions:

* (1) Stat()—The default constructor for Stat. It should create a double array having length 0.

e (2,3,4,5) Stat (double[] d), Stat(int[]

i),

Stat (long[] lo),

Stat(float[] £f) — Constructs a Stat object using the values held in the parameter array.
Invoking the constructor should create a double array of the same length as the parameter array and
holding copies of its values. A reference to this new array should be assigned to data.

Note that if the parameter is null, then an empty array should instead be assigned to data.

CSCI 1301: Introduction to Computing and Programming Fall 2016

Lab 13 — Method Overloading; One-Dimensional Arrays

e (6,7,8,9) setData(double[] d), setData(int[] i), setData(long[] 1lo0),
setData (float[] £) — As in Lab 12, these methods are used to set the values of the data
array. Here, if the array used as parameter is not null, then each of these methods should create a
new double array containing exactly the elements of the parameter array. A reference to this new
array is assigned to data. If the parameter is null, however, then an empty array should instead be
assigned to data.

* (10) getData ()—This method is left unchanged from Lab 12. It should create a new array
containing exactly the values contained in data and return a reference to this new array. This should
happen even if data is an empty array (has length 0).

* (11) equals(Stat s) — Unchanged from Lab 12. The method returns true if the data
arrays of both objects, the calling Stat object and the passed Stat object s, have the same values
(and in the same order). Otherwise, it returns false. If the parameter s is null, the method returns
false.

* (12) reset(): This clears the data array. A new empty double array is created and assigned to
data.

* (13,14,15,16) append(double[] d), append(int[] i), append(long[] 1lo0),
append (float[] £) —These methods should create a new double array containing exactly those
elements of data followed by those of the array passed as parameter. A reference to this array
should be assigned to data. If the parameter is null, then the method should do nothing (no new
array created).

* (17) isEmpty ()— returns the boolean value true if the data object is empty (has length 0).
Otherwise, it returns false.

* (18) toString()—As in Lab 12, this method returns a String representation of the data
elements, if any, stored in the Stat object. See the examples below for the correct format.

* (19) min ()—Returns the minimum of the data array. If the array is empty, then it should return
Double.NaN.

* (20) max()—Returns the maximum of the data array. If the array is empty, then it should
return Double . NaN.

* (21) average () —Returns the average or mean of the values in the data array. If data is an
empty array, then the method should return Double . NaN.

* (22) mode () — The mode is the value that occurs most frequently in a collection of values. In the
Stat class, if one value occurs more frequently in data than all others, then mode () should return
this value. If there is no such unique value, or if the data array is empty, mode () should return
Double.NaN.

* (23) occursNumberOfTimes (double value) — Returns the number of times the value
occurs in the data array. This is a private helper method for the mode () method, and its
implementation is optional, but excellent practice decomposing the mode () method.

* (24) variance () — Returns the variance of the data in the data array. To compute this, find
the difference between the value of each element of the data array and the mean, square this distance,
and then sum these squared values. The variance is this sum divided by the number of elements in
data.

Note that if the data array is empty, then Double . NaN should be returned.

* (25) standardDeviation () : Returns the square root of the variance. If the data array is

empty, then Double .NaN should be returned.

CSCI 1301: Introduction to Computing and Programming Fall 2016

Lab 13 — Method Overloading; One-Dimensional Arrays

eL.C Submission and Grading

After you have completed and thoroughly tested your program, upload Stat. java to eLC. Always
double check that your submission was successful on eLC!

The lab will be graded according to the following guidelines.
* A score between 0 and 100 will be assigned.
* If'the source file(s) are not submitted before the specified deadline’s late period ends (48 hours
after the deadline), or if they do not compile.

* The program will be evaluated using a separate testing file. Multiple instances of the Stat class
will be created and their methods invoked.

Examples

Example 1

Example main method.:

double[] datal = {};
Stat statl = new Stat(datal);

System.out.println("statl data = " + statl.toString());
System.out.println("statl min = " + statl.min());
System.out.println("statl max = " + statl.max());
System.out.println("statl average = " + statl.average());
System.out.println("statl mode = " + statl.mode());

System.out.println("statl variance = " + statl.variance());
System.out.println("statl standard deviation = " + statl.standardDeviation());
System.out.println("statl is empty = " + statl.isEmpty() + "\n");

Example output:

statl data = []

statl min = NaN

statl max = NaN

statl average = NaN

statl mode = NaN

statl variance = NaN

statl standard deviation = NaN
statl is empty = true

Example 2

Example main method.:

double[] datal = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

Stat statl = new Stat(datal);

System.out.println("statl data = " + statl.toString());
System.out.println("statl min = " + statl.min());

CSCI 1301: Introduction to Computing and Programming Fall 2016

Lab 13 — Method Overloading; One-Dimensional Arrays

System.out.println("statl max = " + statl.max());

System.out.println("statl average = " + statl.average());
System.out.println("statl mode = " + statl.mode());

System.out.println("statl variance = " + statl.variance());
System.out.println("statl standard deviation = " + statl.standardDeviation());
System.out.println("statl is empty = " + statl.isEmpty() + "\n");

statl.reset();

System.out.println("statl data = " + statl.toString());
System.out.println("statl min " + statl.min());
System.out.println("statl max = " + statl.max());
System.out.println("statl average = " + statl.average());
System.out.println("statl mode = " + statl.mode());

System.out.println("statl variance = " + statl.variance());

System.out.println("statl standard deviation = " + statl.standardDeviation());
System.out.println("statl is empty = " + statl.isEmpty() + "\n");

Example output:

statl data = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
statl min = 1.0

statl max = 9.0

statl average = 5.0

statl mode = NaN

statl variance = 6.666666666666667

statl standard deviation = 2.581988897471611

statl is empty = false

statl data = []

statl min = NaN

statl max = NaN

statl average = NaN

statl mode = NaN

statl variance = NaN

statl standard deviation = NaN
statl is empty = true

Example 3

Example main method.:

float[] datal = {10.0F,10.0F};

Stat statl = new Stat(datal);

System.out.println("statl data = " + statl.toString());
System.out.println("statl min " + statl.min());
System.out.println("statl max = " + statl.max());
System.out.println("statl average = " + statl.average());
System.out.println("statl mode = " + statl.mode());

System.out.println("statl variance = " + statl.variance());

System.out.println("statl standard deviation = " + statl.standardDeviation() + "\n");

long[] data2 = {80L, 60L};

CSCI 1301: Introduction to Computing and Programming Fall 2016

Lab 13 — Method Overloading; One-Dimensional Arrays

statl.append(data2);

System.out.println("statl data = " + statl.toString());
System.out.println("statl min = " + statl.min());
System.out.println("statl max = " + statl.max());
System.out.println("statl average = " + statl.average());
System.out.println("statl mode = " + statl.mode());

+ statl.variance());
" + statl.standardDeviation() + "\n");

System.out.println("statl variance =
System.out.println("statl standard deviation =

Example output:

statl data = [10.0, 10.0]
statl min = 10.0

statl max = 10.0

statl average = 10.0

statl mode = 10.0

statl variance = 0.0

statl standard deviation = 0.0

statl data = [10.0, 10.0, 80.0, 60.0]

statl min = 10.0

statl max = 80.0

statl average = 40.0

statl mode = 10.0

statl variance = 950.0

statl standard deviation = 30.822070014844883

Example 4

Example main method.:

double[] data = {-5.3, 2.5, 88.9, @, 0.0, 28, 16.5, 88.9, 109.5, -90, 88.9};
Stat statl = new Stat();

System.out.println("statl data = " + statl.toString());
statl.append(data);

System.out.println("statl has been altered.");

System.out.println("statl data = " + statl.toString());
System.out.println("statl min = " + statl.min());
System.out.println("statl max = " + statl.max());
System.out.println("statl average = " + statl.average());
System.out.println("statl mode = " + statl.mode());

+ statl.variance());
" + statl.standardDeviation() + "\n");

System.out.println("statl variance =
System.out.println("statl standard deviation =

Example output:

statl data = []
statl has been altered.

CSCI 1301: Introduction to Computing and Programming

Fall 2016

Lab 13 — Method Overloading; One-Dimensional Arrays

statl data = [-5.3, 2.5, 88.9, 0.0, 0.0, 28.0, 16.5, 88.9, 109.

statl min = -90.0

statl max = 109.5

statl average = 29.80909090909091

statl mode = 88.9

statl variance = 3192.369917355372

statl standard deviation = 56.50106120556827

Example 5

Example main method.:

double[] datal
float[] data2 {70.0F, 80.0F};
int[] data3 {90, 100},

long[] datad = {1eeL, 110L};

{50.0, 60.0};

Stat statl = new Stat();

System.out.println("statl data = " + statl.toString());
statl.setData(datal);
System.out.println("statl data = " + statl.toString());
statl.setData(data2);
System.out.println("statl data = " + statl.toString());
statl.setData(data3);
System.out.println("statl data = " + statl.toString());
statl.setData(data4);
System.out.println("statl data = " + statl.toString());

datal = null;
statl.setData(datal);
System.out.println("statl data = " + statl.toString());

Example output:

statl data = []

statl data = [50.0, 60.0]
statl data = [70.0, 80.0]
statl data = [90.0, 100.0]
statl data = [100.0, 110.0]

statl data = []
Example 6

Example main method.:

double[] datal
float[] data2 {70.0F, 80.0F};
int[] data3 {90, 100},
long[] datad = {1eeL, 110L};
Stat statl = new Stat();

{50.0, 60.0};

System.out.println("statl data = " + statl.toString());
statl.append(datal);
System.out.println("statl data = " + statl.toString());

statl.append(data2);

5, -90.0, 88.9]

CSCI 1301: Introduction to Computing and Programming

Lab 13 — Method Overloading; One-Dimensional Arrays

System.out.println("statl
statl.append(data3);
System.out.println("statl
statl.append(data4);
System.out.println("statl
datal = null;
statl.append(datal);
System.out.
System.
System.
System.
System.
System.
System.

println("statl
out.println("statl
out.println("statl
out.println("statl
out.println("statl
out.println("statl
out.println("statl

Example output:

statl data = []

statl data = [50.0, 60.0]
statl data = [50.0, 60.0,
statl data = [50.0, 60.0,
statl data = [50.0, 60.0,
statl data = [50.0, 60.0,
statl min = 50.0

statl max = 110.0

statl average = 82.5
statl mode = 100.0

statl variance = 393.75
statl

Example 7

Example main method.:

double[] datal
int[] data2
Stat statl
Stat stat2
Stat stat3
Stat stat4
System.out.println("statl
System.out.println("stat2
System.out.println("stat2
System.out.println("statl
System.out.println("statl
System.out.println("statl

{10,10};
{10,10};

new Stat();
null;

Example output:

statl data = [10.0, 10.0]
stat2 data = [10.0, 10.0]
stat2 data = [10.0, 10.0]

data

data

data

data
min
max
averag
mode
varian

standard deviation =

new Stat(datal);
new Stat(data2);

data
data
data
equals
equals
equals

+

+

+

+
" + st
" + st
o "

"+ s

ce =

80.0]
80.0,
80.0,
80.0,

+
+

stat2
stat3
statd

statl.toString());
statl.toString());

statl.toString());

statl.toString());
atl.min());
atl.max());
+ statl.average());
tatl.mode());

+ statl.variance());

90.0, 100.0]
90.0, 100.0, 100.0, 110.0]
90.0, 100.0, 100.0, 110.0]

standard deviation = 19.84313483298443

statl.toString());

stat2.toString());

stat2.toString());

= " + statl.equals(stat2));
+ statl.equals(stat3));
+ statl.equals(statd));

+ statl.standardDeviation() + "\n");

CSCI 1301: Introduction to Computing and Programming

Fall 2016

Lab 13 — Method Overloading; One-Dimensional Arrays

statl equals stat2
statl equals stat3
statl equals stat4

true
false
false

Example 8

Example main method.:

double[] datal = {};
double[] data2 = { 25 };
float[] data3 = {};
float[] datad = { 25 };
int[] data5 = {};

int[] data6é = { 50 };
long[] data7 {};
long[] datas8 { 12 };

Stat statl = new Stat();
statl.append(datal);
statl.append(data2);
statl.append(data3);
statl.append(data4);
statl.append(data5);
statl.append(data6);
statl.append(data7);
statl.append(data8);
datal = null;
statl.append(datal);

System.out.println("statl data = " + statl.toString());
System.out.println("statl min = " + statl.min());
System.out.println("statl max = " + statl.max());

System.out.println("statl average = " + statl.average());

System.out.println("statl mode = " + statl.mode());
System.out.println("statl variance = "

+ statl.variance());

System.out.println("statl standard deviation = " + statl.standardDeviation() + "\n");

Example output:

statl data = [25.0, 25.0, 50.0, 12.0]

statl min = 12.0

statl max = 50.0

statl average = 28.0

statl mode = 25.0

statl variance = 189.5

statl standard deviation = 13.765899897936205

