

CS 341 : http://www.joehummel.net/cs341.html Page 1 of 5

CS 341
Programming Language Design and Implementation

Fall 2016

Homework #6

Complete By: Saturday, November 12th @ 11:59pm

Assignment: completion of CTA Ridership Analysis

Policy: Individual work only, late work *is* accepted

Submission: electronic submission via Blackboard

CTA Ridership Analysis

The assignment is to analyze a database of ridership about Chicago’s CTA system. You’ll be provided with
a SQL Server database of CTA data, and you’ll allow the user to investigate the stations and stops in the
system, as well as ridership data. You are free to design the GUI as you see fit, as long as you provide the
necessary functionality. Here’s one possible design, but this UI is *not* required:

When the application starts, the UI elements are empty. Step #1: the user selects File >> Load to load the
stations in the left-most list box. Step #2: the user selects a station from the list, and the UI elements of #2
are populated — ridership data as well as stops. Step #3: the user selects a stop, and then info about this
stop is displayed. The user also has the ability to display the top-10 stations in terms of ridership — station
name and total ridership; in my design this is invoked through a menu command and displayed.

CS 341 : http://www.joehummel.net/cs341.html Page 2 of 5

CTA Database

The CTA database consists of 5 tables: Stations, Stops, StopDetails, Lines, and Riderships. Here’s the ER
(Entity Relationship) diagram:

The database can be downloaded from the course web page: “Homeworks”, “hw06-files”, and download
“CTA_DB.zip”. Open, extract to a folder on your desktop, and then use Visual Studio’s Server Explorer to
connect, update, and explore the database. Here’s a summary of the design:

Station:
- Denotes one station on the CTA system — a station can have one or more stops, e.g. “Clark/Lake”

has 4 stops (see screenshot on page 1)
- Unique station id (primary key)
- Station’s name

Stop:
- Denotes one stop on the CTA system — “Clark/Lake (inner loop)” is one of the stops at the

“Clark/Lake” station
- Unique stop id (primary key)
- Contains station ID of station to which this stop is associated (foreign key)
- Stop’s name
- Stop’s direction (N, E, S, W)
- ADA — a boolean denoting whether stop is handicap accessible
- Position — latitude and longitude

https://www.dropbox.com/s/ch0a1dg0701do83/CTA_DB.zip?dl=0

CS 341 : http://www.joehummel.net/cs341.html Page 3 of 5

Line:
- Denotes one CTA line, e.g. “Red” or “Blue”
- LineID is a unique ID (primary key)
- Color is the line’s name

StopDetail:
- A stop may be on one or more CTA lines — e.g. “Clark/Lake (inner loop)” is on the Green, Purple-

Express, Pink and Orange lines
- One StopDetail denotes one unique pair (stop id, line id). Example: “Clark/Lake (inner loop)” is on

4 lines, so there are 4 unique pairs and thus 4 StopDetails in this table
- Stop ID denotes the stop (foreign key)
- Line ID denotes the line (foreign key)
- The pair (StopID, LineID) forms a composite primary key

Ridership:
- Denotes how many customers went through the turnstile at this station in one day.
- RiderID is a unique id (primary key)
- StationID is the station id (foreign key)
- TheDate for this data collection
- TypeOfDay: a single character where ‘W’ denotes a weekday, ‘A’ denotes Saturday, and ‘U’ denotes

Sunday or Holiday.
- DailyTotal is the total # of customers who went through the turnstile on this date

We’ll talk more about this design in class, including primary keys, foreign keys, and the rationale behind
“detail” tables like ShopDetails.

Getting Started

Download the database and learn more about the database design (“schema”). Be sure to open a
connection using Visual Studio’s Server Explorer so that the database files can be updated to the version of
SQL Server you have installed.

Next, think about your GUI design and start building out the functionality step by step. You need to

include all the functionality shown in the screenshot on page 1, including the “top 10 stations by ridership”
implied by the menu command. The top-10 should display both the stations name, and the total # of riders
through that station, in descending order.

Requirements

In order to execute SQL queries, you must use ADO.NET via C#, with your queries written as raw C# strings.
This approach is introduced in the pre-class assignment for Friday, 11-04, and will be discussed in further
detail during Monday’s lecture on 11-07. Both are available on the course web site.

Visual Studio and C# provide a number of other techniques for building database applications: LINQ, data-

CS 341 : http://www.joehummel.net/cs341.html Page 4 of 5

binding, drag-drop code generation, etc. NONE of these techniques may be used. You must write all the code
to create the SQL query strings, execute them, and display the results. On the other hand, you are encouraged
to use Server Explorer’s query window to formulate your queries, and then copy-paste them into your C#
program.

Electronic Submission

First, add a header comment to the top of your C# source code file(s):

//
// CTA Ridership analysis using C# and SQL Serer.
//
// <<YOUR NAME HERE>>
// U. of Illinois, Chicago
// CS341, Fall 2016
// Homework 6
//

Exit out of Visual Studio, find your project folder, drill down into your bin\Debug folder, and delete the
database files. Then create an archive (.zip) of this entire folder for submission: right-click, Send To, and
select “Compressed (zipped) folder”. Submit the resulting .zip file on Blackboard (http://uic.blackboard.com/)
under the assignment “HW06”.

Your program should be readable with proper indentation and naming conventions; commenting is
expected where appropriate. You may submit as many times as you want before the due date, but we grade
the last version submitted. This implies that if you submit a version before the due date and then another
after the due date, we will grade the version submitted after the due date — we will *not* grade both and
then give you the better grade. We grade the last one submitted. In general, do not submit after the due date
unless you had a non-working program before the due date.

Policy

Late work *is* accepted. You may submit as late as 24 hours after the deadline for a penalty of 25%. After
24 hours, no submissions will be accepted.

All work is to be done individually — group work is not allowed. While I encourage you to talk to your

peers and learn from them (e.g. via Piazza), this interaction must be superficial with regards to all work
submitted for grading. This means you *cannot* work in teams, you cannot work side-by-side, you cannot
submit someone else’s work (partial or complete) as your own. The University’s policy is described here:

http://www.uic.edu/depts/dos/docs/Student%20Disciplinary%20Policy.pdf .

In particular, note that you are guilty of academic dishonesty if you extend or receive any kind of unauthorized
assistance. Absolutely no transfer of program code between students is permitted (paper or electronic), and
you may not solicit code from family, friends, or online forums. Other examples of academic dishonesty
include emailing your program to another student, copying-pasting code from the internet, working in a group

http://uic.blackboard.com/
http://www.uic.edu/depts/dos/docs/Student%20Disciplinary%20Policy.pdf

CS 341 : http://www.joehummel.net/cs341.html Page 5 of 5

on a homework assignment, and allowing a tutor, TA, or another individual to write an answer for you.
Academic dishonesty is unacceptable, and penalties range from failure to expulsion from the university; cases
are handled via the official student conduct process described at
http://www.uic.edu/depts/dos/studentconductprocess.shtml .

http://www.uic.edu/depts/dos/studentconductprocess.shtml

