For this assignment you will be writing a series of programs that should be stored in their own "py" files. The filenames you should use are listed at the end of each part. When you're finished you should submit your program to the Assignment #7 category inside of NYU Classes.
Part 1a
You have been asked to write a username validation program for a small website. The website has specific rules on what constitutes a valid username, including:
· All usernames must be between 8 and 15 characters long
· Usernames can only contain alphabetic (a-z and A-Z) and numeric characters (0-9) - no special characters or spaces are allowed.
· The first and last characters in a username cannot be a digit
· Usernames must contain at least one uppercase character
· Usernames must contain at least one lowercase character
· Usernames must contain at least one numeric character
Write a program that asks the user to enter in a username and then examines that username to make sure it complies with the rules above. Here's a sample running of the program - note that you want to keep prompting the user until they supply you with a valid username:
Please enter a username: foo Username must be between 8 and 15 characters. Please enter a username: fooooooooooooooooooo Username must be between 8 and 15 characters. Please enter a username: foo ooo ooo Username must contain only alphanumeric characters. Please enter a username: foooooooooo Your username must contain at least one digit Please enter a username: 1fooooooooo The first / last character in your username cannot be a digit Please enter a username: foooooooo1o Your username must contain at least one uppercase character Please enter a username: Foooooooo1o Your username is valid!
Hint: you will need to count the # of uppercase, lowercase and digit characters using some kind of loop.
This program should be named as follows: LastNameFirstName_assign7_part1a.py (for example, "KappCraig_assign7_part1a.py")

Part 1b
The company you are working for was very happy with your username validator, and now they want you to write a password validator for their website. Here are the rules for passwords:
· Passwords must be at least 8 characters long (but they do not have an upper limit)
· Passwords cannot contain the user's username (i.e. if the username is "My1stUsername" the password cannot be "abcMy1stUsername" or "My1stUsernameABC" because the username can be found inside of the password String)
· Passwords must be a mixture of uppercase letters (A-Z), lowercase letters (a-z), digits (0-9) and a select number of special characters (#, $, % and &). The password must contain at least one of each of these types of characters in order to be valid.
You can make a copy of Part 1a and place your password validator code directly after your username validator. Here's a sample running of the program. Note that you need to continually ask the user for a password until they supply a good one.
Please enter a username: MyAwesome1Name Your username is valid! Please enter a password: abc Passwords must be at least 8 characters long Please enter a password: MyAwesome1Name2 You cannot use your username as part of your password Please enter a password: 2MyAwesome1Name You cannot use your username as part of your password Please enter a password: abcabcabc Your password must contain at least one digit Please enter a password: abcabcabc1 Your password must contain at least one uppercase character Please enter a password: ABCabcabc1 Your password must contain at least one 'special' character Please enter a password: ABC***abc1 Your password contains at least one invalid character Please enter a password: ABC#$%abc1 Your password is valid!
Hint: you will need to count the # of uppercase, lowercase and special characters using some kind of loop. Also, refer to the ASCII table as needed! - you may need to convert portions of your password into their ASCII locations using the ord() function!
This program should be named as follows: LastNameFirstName_assign7_part1b.py (for example, "KappCraig_assign7_part1b.py")

Part 2a
Numerology is the "study of the purported mystical or special relationship between a number and observed or perceived events." It has been used throughout human history as a way to attach meaning to a name, object or event using mathematics. It is considered a "pseudoscience" by modern scientists since it has no basis in observable phenomena. With that said, it makes a great programming challenge so we're going to go with it! :)
What you want to do for this project is to ask the user to type in their name. Next, you will need to use a technique called "theosophical reduction" to convert their name into a number. With this technique we assign each letter of the alphabet its own number. For example, the letter "a" is equal to the number 1. "b" = 2, "c" = 3, "z" = 26, etc. You should ignore non-alphabetic characters (i.e. numbers, spaces and special characters)
Once you've gotten all of the letters converted into numbers you can add them up into one single number. This is the "numerology number" for the name that the user entered.
So for the name "craig" the numerology number would be:
c = 3 r = 18 a = 1 i = 9 g = 7 3 + 18 + 1 + 9 + 7 = 38
Here's are a few sample runnings of this program:
Name: craig Your 'cleaned up' name is: craig Your 'cleaned up' name reduces to: 3 + 18 + 1 + 9 + 7 = c38 Name: craigkapp Your 'cleaned up' name is: craigkapp Your 'cleaned up' name reduces to: 3 + 18 + 1 + 9 + 7 + 11 + 1 + 16 + 16 = 82 Name: rumple stil skin Your 'cleaned up' name is: rumplestilskin Your 'cleaned up' name reduces to: 18 + 21 + 13 + 16 + 12 + 5 + 19 + 20 + 9 + 12 + 19 + 11 + 9 + 14 = 198 Name: !rumple!stil!skin Your 'cleaned up' name is: rumplestilskin Your 'cleaned up' name reduces to: 18 + 21 + 13 + 16 + 12 + 5 + 19 + 20 + 9 + 12 + 19 + 11 + 9 + 14 = 198 Name: pikachu!pikachu! Your 'cleaned up' name is: pikachupikachu Your 'cleaned up' name reduces to: 16 + 9 + 11 + 1 + 3 + 8 + 21 + 16 + 9 + 11 + 1 + 3 + 8 + 21 = 138 Name: PIKACHUpikachu Your 'cleaned up' name is: pikachupikachu Your 'cleaned up' name reduces to: 16 + 9 + 11 + 1 + 3 + 8 + 21 + 16 + 9 + 11 + 1 + 3 + 8 + 21 = 138
Some hints:
· Convert the user's name to all lowercase before you do anything else
· Remove any spaces, numbers or special characters from the name to ensure that you are only working with the letters A-Z
· The ord() function may be userful to convert each character into an ASCII index
This program should be named as follows: LastNameFirstName_assign7_part2a.py (for example, "KappCraig_assign7_part2a.py")

Part 2b
Classic numerology ascribes meaning to the following numbers:
· 0 = emptiness, nothingness, blank
· 1 = independence, loneliness, creativity, originality, dominance, leadership, impatience
· 2 = quiet, passive, diplomatic, co-operation, comforting, soothing, intuitive, compromising, patient
· 3 = charming, outgoing, self expressive, extroverted, abundance, active, energetic, proud
· 4 = harmony, truth, justice, order discipline, practicality
· 5 = new directions, excitement, change, adventure
· 6 = love, harmony, perfection, marriage, tolerance, public service
· 7 = spirituality, completeness, isolation, introspection
· 8 = organization, business, commerce, new beginnings
· 9 = romatic, rebellious, determined, passionate, compassionate
However, you might recall from the previous problem that the sample input ("craig") reduced to the number 38. 38 is not on the "personality trait" lookup table above, so we need to further reduce the number by adding up its individual digits like so:
3 + 8 = 11
The number 11 is not on the personality traits table, so we have to further reduce it:
1 + 1 = 2
The number 2 is on the table, so we can print out to the user what their traits are based on this number.
Note that it might take a few tries to reduce the user's number to a number that is on the personality trait listing. You might want to think about building in a "while" loop that handles this process.
Here are a few sample runnings of this program:
Name: craig Your 'cleaned up' name is: craig Your 'cleaned up' name reduces to: 3 + 18 + 1 + 9 + 7 = 38 Further reduction: 11 Further reduction: 2 This name means ...Quiet Name: pikachu Your 'cleaned up' name is: pikachu Your 'cleaned up' name reduces to: 16 + 9 + 11 + 1 + 3 + 8 + 21 = 69 Further reduction: 15 Further reduction: 6 This name means ...Love Name: charmander! Your 'cleaned up' name is: charmander Your 'cleaned up' name reduces to: 3 + 8 + 1 + 18 + 13 + 1 + 14 + 4 + 5 + 18 = 85 Further reduction: 13 Further reduction: 4 This name means ...Harmony Name: rumplestilskin Your 'cleaned up' name is: rumplestilskin Your 'cleaned up' name reduces to: 18 + 21 + 13 + 16 + 12 + 5 + 19 + 20 + 9 + 12 + 19 + 11 + 9 + 14 = 198 Further reduction: 18 Further reduction: 9 This name means ...Romantic
Some hints:
· Attempt to reduce the user's name one time before you attempt to further reduce it (i.e. my name reduces to 38 the first time - get your name to reduce like this as well, and don't worry about further reducing the name until you understand how to do it the first time)
· Try to use the ord() function to convert a single character into its ASCII equivalent. This should help in the conversion process.
· Once you have reduced the name you should test to see if it is one of the "special" numbers listed above. If so, tell the user what their traits are and end the program.
· If the number is not one of the numbers above then you need to further reduce it. Hint: this should be done using a "while" loop to ensure that you reduce the number as far as it can go.
This program should be named as follows: LastNameFirstName_assign7_part2b.py (for example, "KappCraig_assign7_part2b.py")

Part 3a
For this part you will be writing a series of functions that can be used as part of a "secret message encoder" program. Here are the functions you will be writing as well as some sample code that you use use to test your work.
# function: add_letters # input: a word to scramble (String) and a number of letters (integer) # processing: adds a number of random letters (A-Z; a-z) after each letter # in the supplied word. for example, if word="cat" and num=1 # we could generate any of the following: # cZaQtR # cwaRts # cEaett # # if word="cat" and num=2 we could generate any of the following: # cRtaHFtui # cnnaNYtjn # czAaAitym # # output: returns the newly generated word def add_letters(word, num): 	# function code goes here!
Sample Program
define original word original = "Hello!" # loop to demonstrate the function for num in range(1, 5): # scramble the word using 'num' extra characters scrambled = add_letters(original, num) # output print ("Adding", num, "random characters to", original, "->", scrambled)
Sample Output
Adding 1 random characters to Hello! -> HdeulHlHom!t Adding 2 random characters to Hello! -> HTLedklFNljioMH!bi Adding 3 random characters to Hello! -> HHHZeZrflqSflzOiosNU!jBk Adding 4 random characters to Hello! -> HFtRKeivFllRNlUlGTaooYwoH!JpXL
Hint: you will need to use a loop to generate the required # of random characters, and you will (obviously) need to use some random number functions as well. Think about the algorithm before you start coding! Draw out the steps you think you need to take on a piece of paper. For example: "Start with the first character in the source word. Then generate 'num' new random characters and concatente these characters. Then move onto the next character in the source word and repeat the process".

Once you have written the add_letters function you should begin to work on the next function (remove_letters) which will perform the reverse operation.
# function: remove_letters # input: a word to unscramble (String) and the number of characters to remove (integer) # processing: the function starts at the first position in the supplied word and keeps it. # it then removes "num" characters from the word. the process is repeated again # if the word contains additional characters - the next character is kept # and "num" more characters are removed. For example, if word="cZaYtU" and # num=1 the function will generate the following: # # cat (keeping character 0, removing character 1, keeping character 2, removing # character 3, keeping character 4, removing character 5) # # output: returns the newly unscrambed word def remove_letters(word, num): 	# function code goes here!
Sample Program
word1 = "HdeulHlHom!t" word2 = "HTLedklFNljioMH!bi" word3 = "HHHZeZrflqSflzOiosNU!jBk" word4 = "HFtRKeivFllRNlUlGTaooYwoH!JpXL" unscrambled1 = remove_letters(word1, 1) print ("Removing 1 characer from", word1, "->", unscrambled1) unscrambled2 = remove_letters(word2, 2) print ("Removing 2 characers from", word2, "->", unscrambled2) unscrambled3 = remove_letters(word3, 3) print ("Removing 3 characers from", word3, "->", unscrambled3) unscrambled4 = remove_letters(word4, 4) print ("Removing 4 characers from", word4, "->", unscrambled4)
Sample Output
Removing 1 characer from HdeulHlHom!t -> Hello! Removing 2 characers from HTLedklFNljioMH!bi -> Hello! Removing 3 characers from HHHZeZrflqSflzOiosNU!jBk -> Hello! Removing 4 characers from HFtRKeivFllRNlUlGTaooYwoH!JpXL -> Hello!
Hint: String slicing may make your life a lot easier when writing this function!

Finally, write a function called "shift_characters" that shifts the characters in a word up or down based on their position ASCII table - here's the IPO notation and a sample program:
# function: shift_characters # input: a word (String) and a number of characters to shift (integer) # processing: shifts each character in the supplied word to another position in the ASCII # table. the new position is dictated by the supplied integer. for example, # if word = "apple" and num=1 the newly generated word would be: # # bqqmf # # because we added +1 to each character. if we were to call the function with # word = "bqqmf" and num=-1 the newly generated word would be: # # apple # # because we added -1 to each character, which shifted each character down by # one position on the ASCII table. # # output: returns the newly generated word def shift_characters(word, num): 	 	# function code goes here!
Sample Program
word1 = "apple" newword1 = shift_characters(word1, 1) print (word1, "shifted by +1 is", newword1) unscrambled1 = shift_characters(newword1, -1) print (newword1, "shifted by -1 is", unscrambled1) word2 = "Pears are yummy!" newword2 = shift_characters(word2, 2) print (word2, "shifted by +2 is", newword2) unscrambled2 = shift_characters(newword2, -2) print (newword2, "shifted by -2 is", unscrambled2)
Sample Output
apple shifted by +1 is bqqmf bqqmf shifted by -1 is apple Pears are yummy! shifted by +2 is Rgctu"ctg"{woo{# Rgctu"ctg"{woo{# shifted by -2 is Pears are yummy!
Hint: use the ord() and chr() functions!
This program should be named as follows: LastNameFirstName_assign7_part3a.py (for example, "KappCraig_assign7_part3a.py")

Part 3b
Now you are going to write an "encoder / decoder" program that makes use of your three cryptographic functions. Begin by writing a program that continually asks the user to enter in an option - the user can either (e)ncode a word, (d)ecode a word or (q)uit the program.
If the user chooses to encode a word you should do the following:
· Ask the user for a positive number between 1 and 5. Reprompt them if necessary.
· Next, ask them to enter in a phrase that they want to encode.
· Finally, apply the following algorithm to their word:
· Add 'num' random characters in between each letter of their word (using your add_letters) function
· Shift the word 'num' characters (using your shift_characters function)
If the user chooses to decode a word you should do the following:
· Ask the user for a positive number between 1 and 5. Reprompt them if necessary.
· Next, ask them to enter in a phrase that they want to encode.
· Finally, apply the following algorithm to their word:
· Subtract 'num' random characters in between each letter of their word (using your remove_letters) function
· Shift the word DOWN by 'num' characters (using your shift_characters function)
Here's a sample running of the program:
(e)ncode, (d)ecode or (q)uit: e Enter a number between 1 and 5: 1 Enter a phrase to encode: apple Your encoded word is: boqDqfmsfz (e)ncode, (d)ecode or (q)uit: d Enter a number between 1 and 5: 1 Enter a phrase to decode: boqDqfmsfz Your decoded word is: apple (e)ncode, (d)ecode or (q)uit: e Enter a number between 1 and 5: 2 Enter a phrase to encode: Hello, World!! :) Your encoded word is: JHmgn{nNYnukqFR.Fq"vEY\OqYFt\[n{lf|Y#mJ#kr"UT<cE+og (e)ncode, (d)ecode or (q)uit: d Enter a number between 1 and 5: 2 Enter a phrase to decode: JHmgn{nNYnukqFR.Fq"vEY\OqYFt\[n{lf|Y#mJ#kr"UT<cE+og Your decoded word is: Hello, World!! :) (e)ncode, (d)ecode or (q)uit: q
This program should be named as follows: LastNameFirstName_assign7_part3b.py (for example, "KappCraig_assign7_part3b.py")

Part 4 (Extra Credit)
For this part you will be implementing a series of commonly used String functions and methods by writing your own functions. These functions should behave just like their commonly used counterparts - here are some IPO notation blocks & sample code to get you started:
# function: string_length # input: a word (String) # processing: computes the length of the supplied String (without using the len() function) # output: returns the length of the string (integer) # sample code: print (string_length("apple"))	# 5 print (string_length("pear"))	# 4 print (string_length(""))	# 0
# function: string_isalpha # input: a word (String) # processing: determines if the supplied String contains all alphabetic characters (A-Z,a-z) # DO NOT USE THE "isalpha()" METHOD! # output: returns True of False (boolean) # sample code: print (string_isalpha("apple"))	# True print (string_isalpha("pear!"))	# False print (string_isalpha("123"))	# False print (string_lower("123 AbC"))	# False print (string_isalpha("abc1"))	# False print (string_isalpha(""))	# False
# function: string_isupper # input: a word (String) # processing: determines if the supplied String contains all uppercase characters (A-Z) # DO NOT USE THE "isupper()" METHOD! # output: returns True of False (boolean) # sample code: print (string_isupper("apple"))	# False print (string_isupper("PEAR"))	# True print (string_isupper("123"))	# False print (string_lower("123 AbC"))	# False print (string_isupper("ApPLE"))	# False print (string_isupper(""))	# False
# function: string_isdigit # input: a word (String) # processing: determines if the supplied String contains all numeric characters (0-9) # DO NOT USE THE "isdigit()" METHOD! # output: returns True of False (boolean) # sample code: print (string_isdigit("apple"))	# False print (string_isdigit("PEAR"))	# False print (string_isdigit("123"))	# True print (string_lower("123 AbC"))	# False print (string_isdigit("ApPLE"))	# False print (string_isdigit(""))	# False
# function: string_swapcase # input: a word (String) # processing: swaps uppercase characters with lowercase characters & vice-versa # DO NOT USE THE "swapcase()" METHOD! # output: returns a new copy of the String # sample code: print (string_swapcase("apple"))	# APPLE print (string_swapcase("PEAR"))	# pear print (string_swapcase("123"))	# 123 print (string_lower("123 AbC"))	# 123 aBc print (string_swapcase("ApPLE"))	# aPple print (string_swapcase(""))	# (nothing prints)
# function: string_lower # input: a word (String) # processing: converts all characters in a String to their lowecase equivalents # DO NOT USE THE "lower()" METHOD OR "str.lower()"! # output: returns a new copy of the String # sample code: print (string_lower("apple"))	# apple print (string_lower("PEAR"))	# pear print (string_lower("123"))	# 123 print (string_lower("123 AbC"))	# 123 abc print (string_lower("ApPLE"))	# apple print (string_lower(""))	# (nothing prints)
This program should be named as follows: LastNameFirstName_assign7_part4.py (for example, "KappCraig_assign7_part4.py")
Top of Form
Bottom of Form

[bookmark: _GoBack]

o sy o o o 5 W

Part1a

Pietetapirisviontpaiibapi ey

B e e L
BT s

,:::m :&:k-«(;_w—‘ I U

2 St oty gt vt e s &
e e Y L S Sk B et e
e o e oo T 15t/ ot correr 0 yor

10 e o o e o e e

o st e LhaeFobn s gy
T)

Part1b
e o e s 107w a3 10n

B L T ——

