[bookmark: _GoBack]Homework Problem:
Assignment 6 focuses on the reading and writing of files using the objects ifstream and ofstream. An important skill to learn is reading information from a file, analyzing the information, and writing the new information out to a file. This homework will allow you to start developing that skill.

Test Files
We have provided a sample test files (StudentScores1.txt, StudentScores2.txt) available on Moodle to test your code for the assignment and the challenge problems.

Part 1
Write a function howManyLines(...) that is given a filename and returns the number of lines in the file. For testing this function, have your program read the filename string from user input and write the results of the function in the following format: “Number of lines: XXXXXXX“.
XXXXXXX is the function result printed in 7 spaces. Remember to close the file when you are done reading.

Download our test file to your machine. When you are testing the function, you should enter the full path and filename to our test file on your local machine. As an example, if you downloaded the file from Moodle and saved it your VM desktop then this full path filename would be “ƒhomeƒuserƒDesktopƒ StudentScores1.txt”. You should be able to test this function using any text file on your machine.

[Type here]	[Type here]	[Type here]
Part 2
Often a data file will have a format to the information stored. If you look at the text of our sample test file StudentScores1.txt you will see that it stores records for multiple students. Groups of three lines define a record or entry of a student and the score they received on an exam. Therefore, if there are 10 students there are 30 lines in the file.

Write a function countMatchingRecords(...) that is given a filename, a low score, and a high score and returns the number of matching records. A record matches if the exam score falls in the range given (low score <= exam score <= high score). For testing this function, have your program read the filename string, low score, and high score from user input and write the results of the function in the following format: “Number of Records: XXXXXXX“, where XXXXXXX is the function result printed in 7 spaces.

File StudentScores1.txt: Martha
Jones 99
Micky Smith 41
Jack Harkness 72
Rose Tyler 87
…etc

Part 3
Write a function convertToLetterGrade(...) to read a file’s records in the record format listed above and write a different file with a different format. The function will be given the input filename string and the output filename string. The function will return the number of records processed.

You will also need to write a helper function gradeFromScore(...) that takes a score and returns a string containing the letter grade. For instance a score of 88 would return “B”.
Use the following rules for grades: 90 <= score <= 100 ~ A 80 <= score < 90 ~ B
70 <= score < 80 ~ C 60 <= score < 70 ~ D 0 <= score < 60 ~ F

For testing this function, have your program read the input filename string and the output filename string. Write the results of the function in the following format: “Number of Grades: XXXXXXX“, where XXXXXXX is the function result printed in 7 spaces.

The format of the output file is different than the input file. Each record of the output file will have three lines, but using the format listed below:
Last name, first name score
grade

As an example if your input file was the example file we supplied and the output file was specified as “ƒhomeƒuserƒDesktopƒLetterGrades.txt”, then your program would create and save a new file called LetterGrades.txt on your desktop.

The contents of LetterGrades.txt should look like this:

…etc

Jones, Martha 99
A
Smith, Micky 41
F
Harkness, Jack 72
C
Tyler, Rose 87
B

Challenge Problem

If you have gained the skills required to write the functions described in the first three parts, here is an extended problem to give you more practice. The other example student scores file (StudentScores2.txt) provides has an alternate format for student scores. The line of the record that contained a single score, now has a number of scores separated by commas. Create a function to read the records, calculate an average score from the line of scores, and write a new file in the format specified above in Part 3, with the average score written out on the second line of the output record using only one decimal place.

File StudentScores2.txt: Martha
Jones 99, 100
Micky Smith
41, 60, 49
Jack Harkness 72, 77, 78
Rose Tyler
87, 92, 77
…etc

The contents of LetterGrades2.txt should look like this:

…etc

Jones, Martha 99.5
A
Smith, Micky 50.0
F
Harkness, Jack 75.7
C
Tyler, Rose 85.3
B
