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Abstract: This paper studies the static stability of six kinds of scissor lifts with one input force of hydraulic actuator, and 
the input is on the lines of the nodes of the scissor lifts. Firstly the static stability of single scissor arm is studied by using 
energy method and modeling method in the software Nastran. The stability results of two methods are compared. Then the 
scissor lift models with hydraulic actuators are made to analyze the static stability. The static stability of six kinds of 
scissor lifts are compared. The results of the overall model are closer to the actual situation. By analyzing single arm 
models it is easier to compare theoretical solutions and modeling solutions, thus the study of stability of single scissor arm 
is meaningful. 
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1. INTRODUCTION OF SCISSOR LIFTS WITH 
DIFFERENT INPUT VECTORS 

 Scissor lifting mechanism is a typical lift machine [1-6] 
which has many advantages such as stable structure [4], 
reliable operation [1], high efficiency [2, 3, 5] and low 
failure rate [2, 6], etc. As a key component of platforms, the 
stability of scissors lifting mechanism determines the safety 
of the platform equipment [1, 6]. The instablility of scissor 
lift will make agency staff wounded or even death. In this 
paper, models of single scissor arm are made by using Finite 
Element software. The Critical load is calculated by buckling 
analysis. The theoretical results of critical loads are 
calculated by using energy method. The two results of 
modeling and energy method are compared. The FEM 
models of the total scissor lifts mechanism are made and the 
stability of scissor lifts with different input vectors are 
compared. 
 For a scissor lift with one input force of hydraulic 
actuator, and the input is on the lines of the nodes of the 
scissor lifts, there are 6 different kinds of scissor lifts in total, 
as shown in Fig. (1). 

2. RELATED DATA OF MODELS 

 The main parts of scissor lifts are two scissor arms, a 
hydraulic actuator and a platform. The models are simplified 
as two dimension models with a hypothesis that the load W 
is fixed in the middle of the platform. The actuator force is P, 
the length of two scissor arms are 2 L with their number 
shown in Fig. (2). 
 

 The first kind of scissor lift is shown with the angle 
between ground and the scissor arm, the blue line represents 
the hydraulic actuator. All the references of the scissor lift 
are shown in Fig. (2). 

 The material of the scissor arm is aluminum alloy, with 
Young’s modulus 70 GPa, Poisson ratio 0.3 and density

. The material of the hydraulic actuator is 
steel with Young’s modulus 200 GPa, Poisson ratio 0.3, and 
density is . 

 Based on the equation of input hydraulic force and the 
load, we can get  

 (1) 

 The references M and N in the six cases are shown in 
Table 1. 
 For all the rest of the research the data of all references 
are given:l=600mm, W=2000N, the valuevaries from 15 
degree to 45 degree. All the other data of references are 
shown in Table 2. 
 The cross section of the scissor arm is shown in Fig. (3), 
with the data B=30 mm, H=50 mm, b=24 mm, h=44 mm. 
 The area of the cross section, and the inertial moment. 

 

 

3. STATIC ANALYSIS OF RIGID BODY 

 In order to analyze the stability of scissor arms, the 
internal forces of the nodes must be calculated. Each of the 
five nodes are given a number. In the coordinate system the 
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forces can be decomposed a sand. Since W is in the middle 
of the platform, the hypothesis is given. The first case is 
shown in Fig. (4). 

 
Fig. (2). Characteristic triangles of 6 different input configurations. 

Table 1. Expressions of references between hydraulic force 
and load. 

 

Case 1 2 3 4 5 6 

M -c c f-2l 2l-f 0 c+f-2l 

N 2l-c c f 2l-f 2l f-c 

 
Table 2. Expressions of references of the six scissors. 
 

Reference 1 2 3 4 5 6 

c (mm) 
f (mm) 
a (mm) 
d (mm) 

200 
 

300 

200 
 
 

300 

 
200 

 
548 

 
200 
548 

 
 

200 
300 

200 
400 

 

 

 

 
Fig. (3). Characteristic triangles of 6 different input configurations. 

 
Fig. (4). Coordinate system and number of nodes in the scissor lifts. 

 The equilibrium of the force for the whole scissor: 

 (2) 

  (3) 
The equilibrium of the moment for the whole scissor: 

  (4) 

The equilibrium of the force for the scissor arm number 1: 

  (5) 
Fy1 = Fy2 = −W

2

−Pcosθ + Fx4 = 0

−W + Psinθ + Fy4 + Fy5 = 0

−W L cosθ
2

+ Fy5L cosα + Pasinθ = 0

Fx3 = −Fx4

 
Fig. (1). Characteristic triangles of 6 different input configurations. 
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  (6) 

 The equilibrium of the force for the scissor arm number 
2: 

  (7) 

 From (2) to (7) we can calculate the internal forces of 
nodes represented by W and P (See Table 3). 
Table 3. Expressions of internal forces for the first case. 
 

Internal Forces of Nodes   

1 0  

2 0  

3   

4   

5 0  

4. STABILITY ANALYSIS OF SCISSOR ARM BY 
ENERGY METHOD 

 The total potential energy of an object is equal to the 
puissance of all forces from the stress state position to 
unstressed position. Since both the external force and 
internal force contributed to the puissance, the total potential 
energy expression is 

 (8) 

where U is internal potential energy V is outer energy. For 
an elastic body, U equals to outer puissance, therefore

 
 For a scissor arm, when the derivative of potential energy 
to the axial force equals 0, the arm is in equilibrium. When 
the second derivative of potential energy to the axial force is 
bigger than 0, the arm is in stable equilibrium. In this case 
the axial load is the critical load. 
 The first derivative of internal energy is: 

  (9) 

where F is the axial force, M is the moment of the arm. 
 Suppose the scissor arm can be divided into two parts of 
length l, the integration of internal energy is: 

  (10) 

where andare moments on the two parts of the arm. 

 The critical force F can be calculated by the derivation of 
U to F. When the derivation equals 0, the relevant force 
equals critical load. 
 Take the first case as an example. In order to analyze the 
stability of scissor arm, a simplification of boundary 
condition is given in Fig. (5). 
 Analyze the scissor arm number 1 

 
Fig. (5). Boundary condition of the scissor arm number 1 of first 
case. 

 Define V as the deflection of the scissor arm and we can 
get: 

 (11) 

 (12) 

 When there are vertical and axial load on the arm, it is 
difficult to calculate the deflection. A simplification is made 
to help solve the problem: the deflection of scissor arm is 
made by axial load. Then we get the results: 

 (13) 

 (14) 

 (15) 

 When we can calculate the critical load. The result is 
calculated in Matlab and we can get =21078 N. As for the 
arm number 2 as shown in Fig. (6), there is a hydraulic force 
at x=c, the axial force 

 

 
Fig. (6). Boundary condition of the scissor arm number 2 of first 
case. 

Suppose there are vertical and axial load on the arm, for 
right arm, the deflection is 

. 
 For left arm, we can divide it into two parts: 
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 (16) 

 Now the scissor arm is composed of 3 parts 
 For the first part, 0<x<c: the deflection 

  (17) 

 The moment of this part: 

 (18) 

 The deflection at x=c is 

 (19) 

 At the second partc<x<l, the deflection of this part is 

  
V2 =

Fx(l2 − x2 )
6EI

-
F3(l − x)c(x2 − l2 + (l − c)2 )

6lEI
 (20) 

 The moment of this part is 

  (21) 

 The third part is the right arm: 

  (22) 

  (23) 

 The moment of this part is 

 (24) 

 Integrate the internal energy U on the three parts of the 
scissor arm: 

 (25) 

 When the critical load is calculated, we have 

,  
 The critical load of the scissor arm number 2 of the first 
case equals to =21030 N. 

 

=21030 N. 
 The critical axail force and the critical load of the 6 kinds 
of scissor lifts are calculated by using energy method. All the 
results are shown in the Table 4. Since the fifth case is 
special, the scissor arm number 1 of the fifth case does not 
buckle or have a potential of losing stability under the 
boundary condition that is given, in this paper we only study 
the scissor arm number 2 of this case. 
 For each case of the scissor lifts, the final critical load 
equals the smaller critical load of its two scissor arms. 
 For each case of the scissor lifts, the final critical load 
equals the smaller critical load of its two scissor arms. 

5. FEM MODELING ANALYSIS OF THE SCISSOR ARM 

 Finite element method is an efficient and approximating 
calculation method. It is also a method of numerical solution 
of solving field problem. The principle is dividing the 
continuous solution domain into a finite number of discrete 
units, find an approximate solution with the approximate 
function within each cell hypothesis, Then all the cells are 
combined to form a corresponding numerical model 
according to standard methods. In this paper MSC.Patran 
and MSC.Nastran are used to analyse the static stability of 
the scissor lift, the critical load of different cases are 
analysed in Nastran by using buckling analyse. 
 Take the first case as an example, the main steps of 
modeling in Patran are as follows: 
1. Building the geometry model: build a curve, with its 

length 1200 mm, from the point (0, 0, 0) to the 
point (1200, 0, 0). 
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Table 4. Critical axial force and critical load of the scissor lift. 
 

Case 1 2 3 4 5 6 

expression 
       

expression 
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2. Building meshes: build one dimension element to the 
curve and give 101 nodes. 

3. Defining material: give aluminum to the scissor arm: 
Young’s modulus equals 70 GPa, and poison ratio 
equals 0.3. 

4. Defining property: give beam property (1D) to the 
arms. 

5. Defining boundary conditions: boundary conditions 
correspond to the model’s hypotheses 

6. Defining load: the load correspond to the model’s 
hypotheses, add a force of <-707, -707, 0> on the 
node of right edge. 

7. Analyze: choose buckling analysis and obtain the 
buckling factor of first degree. 

8. Access results: Access result of Nastran and get the 
buckling factor in patran. 

 Take the two scissor arms of the second case of scissor 
lift as the examples that modeled as type in Fig. (7), the 
buckling results are shown in Figs. (8, 9). 
 The same analysis and the corresponding results of single 
scissor arm buckling critical load factor can be obtained 
through the six kinds of scissor lifts each. All the buckling 
factors and critical loads of the six kinds of scissor lifts are 
shown in Table 5. For each case the smaller critical load of 
the two scissor arms is the critical load of the scissor lift. 

 Similarly to the results of the energy method, the scissor 
arm number 1 of the fifth case doesn’t have a stability 
problem in the hypothesis of boundary condition given in the 
paper. Only the stability of scissor arm number 2 of fifth 
case is considered. Take the results of energy method and 
modeling method of the six cases of scissor lifts and make a 
comparison. The result is shown in Table 6. 

6. STATIC STABILITY ANALYSIS OF SCISSOR LIFT 
MODEL 

 The scissor lift model studied in this factor includes two 
scissor arms and a hydraulic actuator, the actuator is a 
cylinder model with the material of steel. Static stability 
analysis of the model includes scissor arm instability and 
hydraulic cylinder instability. 
 The property of the hydraulic actuator is one dimension 
element with Young’s Modulus equals 200 Gpa and Poisson 
ratio equals 0.3. 
 When making the model of scissor lift, we select the 
lifting angle equals 15 degrees, 30 degrees and 45 degrees. 
Take the first case with lifting angle equals 45 degree as an 
example, the model is shown in Fig. (10). 
 For any kind of scissor lift, the minimum critical load 
values in the three cases is the critical load of the case. The 
critical buckling load factor and the modeling results 
obtained are shown in Table 7. 

 
Fig. (7). The modeling of scissor arm in Patran. 

 
Fig. (8). Buckling results of the scissor arm number 1 of second case. 
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Fig. (10). Model of the first case of scissor lift. 

 After modeling and calculating six kinds of scissor lifts’ 
critical load, the order of static stability of six cases from 
good to bad is: 5, 4, 1, 6, 2, 3. 

CONCLUSION 

 This paper studies the static stability of six kinds of 
scissor lifts with one input force of hydraulic actuator, and 
the input is on the lines of the nodes of the scissor lifts. The 
static stability of six kinds of scissor lifts are compared. 
 For the stability analysis of single scissor arm, the results 
of two methods are basically consistent, which verified the 
accuracy of the single scissor arm critical loads. When using 
the finite element model to analyze the stability, the method 
Eigen value buckling analysis is used. The results of 
modeling and simulation is slightly larger than the energy 
analysis results, because the Eigen value buckling analysis 
result is considered as the upper limit of the critical load. 

 
Fig. (9). Buckling results of the scissor arm number 2 of second case. 

Table 5. Buckling factors and critical load of six cases of scissor lifts. 
 

Case  1  2  3  4  5  6  

W_energy (N)  59600  33460  52400  46110  112700  62900  

W_modeling (N)  63730  35760  52800  46930  120500  64190  

Difference (%)  6.5  6.4  0.76  1.7  6.5  2.0  

 
Table 6. Comparison of energy method and modeling method of scissor arms’ static stability. 
 

Case 1 2 3 4 5 6 

Factor1 31.86 -17.879 -26.413 -23.462  32.093 

Factor2 160.91 31.86 31.863 -31.228 60.23 31.863 

(N) 22530 22530 5280 16590  22690 

(N) 22530 22530 22530 22480 22530 22530 

(N) 63730 35760 52800 46930  64190 

(N) 318670 63730 63730 62460 120500 63730 

Fcr ,1

Fcr ,2

Wcr ,1

Wcr ,1
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 The stability results of single scissor arm and the scissor 
lift are compared. The results obtained from single scissor 
arm are better than the overall scissor lift model, which is 
due to its stronger boundary conditions. The results of the 
overall model are closer to the actual situation. By analyzing 
single arm models it is easier to compare theoretical 
solutions and modeling solutions, thus the study of stability 
of single scissor arm is meaningful. 
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Table 7. The buckling factor and critical load of scissor lift models. 
 

Case 1 2 3 4 5 6 

Factor_15 12.56 1.97 1.43 13.59 35.755 11.88 

W_15(N) 25120 3940 2860 27180 71510 23760 

Factor_30 11.25 2.65 3.07 11.64 67.803 10.03 

W_30(N) 22500 5300 6140 23280 135606 20060 

Factor_45 9.89 3.22 5.2 10.01 87.939 8.70 

W_45(N) 19780 6440 10400 20020 175878 17400 

Critical load (N) 19780 3940 2860 20020 71510 17400 


