

Write neatly and carefully. Justify your answer. You won't receive credits if I cannot read your answer, and/or you didn't show your work.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the derivative of the function.

Points: 5

$$1) f(x) = \ln\left(\frac{x^3 - 4}{x}\right)$$

A) $\frac{3x^2 - 1}{x(x^3 - 4)}$

B) $\frac{2x^3 + 4}{x(x^3 - 4)}$

C) $\frac{x}{x^3 - 4}$

D) $\frac{3x^2}{x^3 - 4}$

Differentiate.

Points: 5

$$2) f(x) = 9x^3$$

A) $9\ln 3(x^2)(9x^3)$

B) $3(x^2)(9x^3)$

C) $\ln 9(9x^3)$

D) $3\ln 9(x^2)(9x^3)$

Find the derivative of the function.

Points: 8

$$3) y = x^6 \ln x - \frac{1}{3}x^3$$

A) $7x^5 - x^2$

B) $6x^5 - x^2$

C) $x^5 - x^2 + 6x^5 \ln x$

D) $x^6 \ln x - x^2 + 6x^5$

Solve the problem.

Points: 8

4) If \$3500 is invested in an account that pays interest compounded continuously, how long will it take to grow to \$10,500 at 9%?

A) 15.1 years B) 12.2 years C) 8.0 years D) 9.9 years

Points: 8

5) The demand function for a certain product is given by

$$D(p) = 200e^{-0.1p},$$

where p is price per unit. Recall that total revenue is given by $R(p) = pD(p)$. At what price per unit p will the revenue be maximum?

A) \$20 B) \$5 C) \$9 D) \$10

Points: 8

6) A consumer group in one city compares the costs of goods and services in that city over various years, and uses 1970 as a base. The same goods and services that cost \$100 in 1970 cost \$37 in 1941. Assume the exponential-decay model in which t is the number of years before 1970. Estimate what the same goods and services cost in 1900. (You will need to find the value of k)

A) \$9

B) \$11

C) \$8

D) \$1080

Find all relative maxima or minima (Use SDT).

Points: 8

7) $y = \ln x - x$

A) $(-1, -1)$, relative maximum
C) $(1, -1)$, relative maximum

B) $(1, 0)$, relative minimum
D) $(-1, 0)$, relative minimum

Evaluate. Assume $u > 0$ when $\ln u$ appears.

Points: 8

8) $\int 6x^2 \sqrt[4]{8 + 4x^3} dx$

A) $6(8 + 4x^3)^{5/4}$

B) $\frac{2}{5}(8 + 4x^3)^{5/4} + C$

C) $-4(8 + 4x^3)^{-3/4} + C$

D) $\frac{2}{5}(8 + 4x^3)^{5/4}$

Solve the problem.

Points: 8

9) A manufacturer determined that its marginal cost per unit produced is given by the function

$$C'(x) = 0.0006x^2 - 0.4x + 87.$$

Find the total cost of producing the 401st unit through the 500th unit. (Use integral)

A) \$9000

B) \$15,100

C) \$2900

D) \$2876.96

Evaluate. Assume $u > 0$ when $\ln u$ appears.

Points: 5

$$10) \int \frac{1}{x(\ln x)^{13}} dx$$

A) $-\frac{1}{12x(\ln x)^{12}} + C$

B) $-\frac{1}{14(\ln x)^{14}}$

C) $-\frac{1}{12(\ln x)^{12}}$

D) $-\frac{1}{12(\ln x)^{12}} + C$

Approximate the area under the graph of $f(x)$ over the specified interval by dividing the interval into the indicated number of subintervals and using the left endpoint of each subinterval.

Points: 8

11) $f(x) = 0.5x^4 + 0.1x^3 + x^2 - 1$; interval $[1, 4]$; 3 subintervals

A) 212.4

B) 69.6

C) 63.6

D) 213.0

Evaluate.

Points: 5

$$12) \int_1^6 \frac{2x+2}{x^2+2x+6} dx$$

A) $\ln 54$

B) $\ln \frac{7}{27}$

C) $14 \ln 6$

D) $\ln 6$

Solve the problem.

Points: 8

13) A company determines that its marginal revenue per day is given by $R'(t) = 100e^t$, $R(0) = 0$, where

$R(t)$ = the revenue, in dollars, on the t^{th} day. The company's marginal cost per day is given by $C'(t) = 140 - 0.3t$, $C(0) = 0$, where $C(t)$ = the cost, in dollars, on the t^{th} day. Find the total profit from $t = 0$ to $t = 5$ (the first 5 days). Round to the nearest dollar.

Note: $P(T) = R(T) - C(T) = \int_0^T [R'(t) - C'(t)] dt$.

A) \$14,145

B) \$14,049

C) \$14,038

D) \$14,045

Find the area bounded by the given curves.

Points: 8

14) $y = x^2 - 5x + 4$, $y = -(x - 1)^2$

A) $\frac{7}{8}$

B) $\frac{9}{8}$

C) $\frac{8}{7}$

D) $\frac{8}{9}$