

## Mathematical Formulae

1. Simple interest ( $I$ ) is:

$$I = P \times R \times T$$

2. The maturity value ( $M$ ) of the principal is:

$$\begin{aligned}M &= P + I \\M &= P(1 + R \times T)\end{aligned}$$

3. The amount of principal ( $P$ ) required is:

$$P = \frac{M}{1 + R \times T}$$

4. The compound interest formula for the accumulated value ( $M$ ) is:

$$M = P(1 + i)^n$$

5. The present value ( $P$ ) at compound interest of an amount  $M$  is:

$$P = M(1 + i)^{-n}$$

6. The compound interest rate ( $i$ ) per period is:

$$i = \left(\frac{M}{P}\right)^{\frac{1}{n}} - 1$$

7. The number of periods ( $n$ ) required for an amount of  $P$  to accumulate to an amount of  $M$ , when the compound interest rate is  $i$  per period, is:

$$n = \frac{\log\left(\frac{M}{P}\right)}{\log(1 + i)}$$

8. The future value ( $S$ ) of annuity is:

$$S = R \times \frac{(1 + i)^n - 1}{i}$$

9. The present value ( $A$ ) of annuity is:

$$A = R \times \left[ \frac{1 - (1 + i)^{-n}}{i} \right]$$

10. The amount of the annuity payment ( $R$ ) made per period is:

$$R = \frac{S}{\frac{(1+i)^n - 1}{i}}$$

11. The amount of the annuity payment ( $R$ ) made per period is:

$$R = \frac{A}{\frac{1 - (1+i)^{-n}}{i}}$$

12. Net profit ( $P$ ) is:

$$P = \text{Income} - \text{Cost} = I - C$$

13. The total cost ( $C$ ) is:

$$C = \text{Variable cost} + \text{Fixed Cost}$$

14. Break-even volume ( $x$ ) is:

$$x = \frac{f}{s - v}$$

15. Net profit ( $P$ ) is:

$$P = I - C = sx - (f + vx) = (s - v)x - f$$

## Statistical Formulae

1. The arithmetic mean ( $\bar{x}$ ) of a set of  $n$  observations is:

$$\bar{x} = \frac{\sum x}{n}$$

2. If each  $x$ -value in a set of observations is assigned a corresponding weight ( $w$ ), the weighted arithmetic mean is:

$$\bar{x} = \frac{\sum xw}{\sum w}$$

3. Range = largest observation - smallest observation

4. Interquartile range = Q3 - Q1

5. A standard score is defined as:

$$\text{Standard score} = z = \frac{\text{observed value} - \text{mean}}{\text{standard deviation}}$$

6. The standard score ( $z$ ) of an observation  $x$  from a population with mean  $\mu$  and standard deviation  $\sigma$  is:

$$z = \frac{x - \mu}{\sigma}$$

7. To convert a standard score  $z$  to a raw score  $x$ , for a distribution with mean  $\mu$  and standard deviation  $\sigma$  use:

$$x = \mu + z\sigma$$

8. To convert a mean of  $\bar{x}$  to a  $z$ -score use:

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

9. If  $\sigma$  is known:

$$\text{Standard error of the mean} = \frac{\sigma}{\sqrt{n}}$$

10. If  $\sigma$  is unknown and  $n$  is large:

$$\text{Standard error of the mean} = \frac{s}{\sqrt{n}}$$

11. If  $\sigma$  is known and the population is Normal, a confidence interval for  $\mu$  is:

$$\left( \bar{x} - z \frac{\sigma}{\sqrt{n}}, \bar{x} + z \frac{\sigma}{\sqrt{n}} \right)$$

12. If  $\sigma$  is known,  $n$  is large, but the population distribution is unknown or not Normal, a confidence interval for  $\mu$  is:

$$\left( \bar{x} - z \frac{\sigma}{\sqrt{n}}, \bar{x} + z \frac{\sigma}{\sqrt{n}} \right)$$

13. If  $\sigma$  is unknown and  $n$  is large, a confidence interval for  $\mu$  is:

$$\left( \bar{x} - z \frac{s}{\sqrt{n}}, \bar{x} + z \frac{s}{\sqrt{n}} \right)$$

14. The sample size required for a specified confidence  $z$  and error  $e$

$$n \geq \frac{z^2 \sigma^2}{e^2}$$

Use  $s$  if  $\sigma$  is unknown.

15. Common  $z$  values are:

For a 90% interval, use  $z = 1.645$

For a 95% interval, use  $z = 1.96$

For a 99% interval, use  $z = 2.58$

16. The formula for a one-sample  $z$ -test statistic where  $\sigma$  is known is:

$$z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

17. The formula for a one-sample  $z$ -test statistic where  $\sigma$  is unknown and  $n$  is large is:

$$z = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

18. The population least-squares regression line is denoted by:

$$\hat{y} = \alpha + \beta x$$

where  $\alpha$  and  $\beta$  are constants

19. The sample least-squares regression line is denoted by:

$$\hat{y} = a + bx$$

where  $a$  and  $b$  are constants