
1. (10 points) Suppose that A is an n× n matrix. We gave at least 10 statements
that are equivalent to the statement “A is invertible.” List 5 of these conditions.
One of your conditions must be a criterion for invertibility that involves the
eigenvalues of A.
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2. Consider the data points (0, 0), (1, 1), (2, 3).

(a) (5 points) Find the line y = c0 + c1x which best fits the data in the least-
squares sense.

Final Exam3



(b) (5 points) Find a quadratic polynomial of the form y = c0 + c1x + c2x
2

which passes through all three of the data points.

Final Exam4



3. (10 points) Let

A =

[
5 −1

−1 5

]
.

Compute a formula for Ak, where k is a positive integer. Your “answer” should
be a single matrix.
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4. Suppose that A is an n× n matrix with eigenvalue λ and corresponding eigen-
vector v.

(a) (3 points) If A is invertible, is v an eigenvector of A−1? If so, what is the
corresponding eigenvalue? If not, explain why not.

(b) (3 points) Is 3v an eigenvector of A If so, what is the corresponding?
eigenvalue? If not, explain why not.
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5. (5 points) Let

A =

 1 3 3
−3 −5 −3

3 3 1

 .

Find the eigenvalues of A and their algebraic multiplicities.
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6. Suppose that det(A) = 7, where

A =

 a b c
d e f
g h i

 .

Evaluate each of the following:

(a) (5 points) det

 a + 2 bd + 2 ce + 2f
3g 3h 3i

fed



(b) (5 points) det

 2a 2b 2c
3d− a 3e− b 3f − c

2g 2h 2i


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7. Suppose that A is a diagonalizable matrix with characteristic polynomial

fA(λ) = λ2(λ− 3)(λ + 2)3(λ− 4)3.

(a) (2 points) Find the size of the matrix A.

(b) (4 points) Find the dimension of E4, the eigenspace corresponding to the
eigenvalue λ = 4.

(c) (4 points) Find the dimension of the kernel (nullspace) of A.
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8. (7 points) Suppose that A is an m×n matrix such that ker(A) = 0. Prove that
AT A is invertible. Be sure to justify each step in your proof completely.
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9. (5 points) Find, with proof, the possible values of the determinant of an n× n
orthogonal matrix A.

10. (5 points) Suppose that A is an invertible matrix. Prove that

det(A−1) =
1

det(A)
.
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11. (7 points) Suppose that A is a diagonalizable n× n matrix and has only 1 and
−1 as eigenvalues. Show that A2 = In, where In is the n× n identity matrix.

12. (5 points) Find, with proof, all possible real eigenvalues of an orthogonal matrix.
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13. (10 points) Determine whether each of the following statements is true or false.
No justification is necessary. Each question is worth 1 point. You will earn 1
point for each question answered correctly, 0 points for each unanswered ques-
tion, and −1 point for each question answered incorrectly, with a minimum
possible score of 0 and a maximum possible score of 10.

(a) If A and B are symmetric n× n matrices, then AB must be symmetric as
well.

(b) If A and S are orthogonal matrices, then S−1AS is also orthogonal.

(c) Suppose that V is a subspace of Rn with an orthonormal basis v1,v2, . . . ,vn.
Let A be the matrix whose column vectors are the vectors v1,v2, . . . ,vn.
Then the matrix of the orthogonal projection onto V is AAT .

(d) If an n × n matrix A does not have n distinct eigenvalues, then A is not
diagonalizable.

(e) If the determinant of a 4× 4 matrix A is 4, then rank(A) = 4.
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(f) If A is an n× n matrix, then the determinant of A is equal to the product
of its diagonal entries.

(g) The matrix


1 413 1
1 111 3
1 131 1
3 111 1
1 314 1

 is orthogonally diagonalizable.

(h) If A and B are similar matrices, then det(A) = det(B).

(i) If an n × n matrix A is diagonalizable, then there is a unique diagonal
matrix that is similar to A.

(j) If 3 is an eigenvalue of an n× n matrix A, then 9 must be an eigenvalue of
A2.
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