INSTRUCTOR GUIDANCE EXAMPLE: Week Four Discussion

Solving Quadratic Equations

#79 pg 637: Solve by Factoring

There is another way this problem could be solved (by **completing the square** which has already been done to it) but our instructions say to solve by **factoring**. This will require us to multiply out the left side and then subtract 9/4 from both sides to leave the right side zero.

 $(p + \frac{1}{2})^2 = \frac{9}{4}$ First we need to expand the left side by FOIL. $p^2 + p + \frac{1}{4} = \frac{9}{4}$ Subtract 9/4 from both sides. $p^2 + p - 2 = 0$ Since $\frac{1}{4} - \frac{9}{4} = -\frac{8}{4} = -2$ we now are free of the fractions. (p+2)(p-1) = 0Left side is **factored**. p + 2 = 0 or p - 1 = 0Using the Zero Factor Property. p = -2 or p = 1Our solutions. $\{-2, 1\}$ Solution set presented. Check: $(p + \frac{1}{2})^2 = \frac{9}{4}$ $(p + \frac{1}{2})^2 = \frac{9}{4}$ 9/4

$(-2 + \frac{1}{2})^2 = \frac{9}{4}$	$(1 + \frac{1}{2})^2 = 9$ $(3/2)^2 = 9/4$
$(-3/2)^2 = 9/4$	· · · · · · · · · · · · · · · · · · ·
9/4 = 9/4	9/4 = 9/4

#87 pg 637	
$-x^{2} + x + 6 = 0$	Factor -1 out of all terms first.
$-1(x^2 - x - 6) = 0$	Divide both sides by -1
$x^2 - x - 6 = 0$	Ready for factoring .
(x-3)(x+2)=0	Left side is factored.
x - 3 = 0 or $x + 2 = 0$	Using the Zero Factor Property.
x = 3 or $x = -2$	Our solutions.
{-2, 3}	Solution set presented.

Check: $-x^2 + x + 6 = 0$	$-x^2 + x + 6 = 0$
$-(-2)^2 + (-2) + 6 = 0$	$(3)^2 + 3 + 6 = 0$
-4 - 2 + 6 = 0	-9 + 3 + 6 = 0
-6 + 6 = 0	-6 + 6 = 0
0 = 0	0 = 0

#47 pg 646:	Solve using	Quadratic Formula
	-	

and ps of or bottle using Quadratic Formatia		
$3y^2 + 2y - 4 = 0$	$a = 3$, $b = 2$, $c = -4$ Discriminant is $b^2 - 4ac$	
	which is $2^2 - 4(3)(-4) = 52$ so we have two real solutions.	
$y = \frac{-(2) \pm \sqrt{2^2 - 4(3)(-4)}}{4}$	All values put into the formula in parenthesis.	
2(3)		
$y = -2 \pm \sqrt{[4 + 48]}$	Simplification begins.	
6		
$y = -2 \pm \sqrt{52}$	Need to simplify the radical next: $52 = 4.13$	

6	
$y = -2 \pm 2\sqrt{[13]}$	Both terms in the top and 6 have a factor of 2 which can
6	be canceled out.
$y = -1 \pm \sqrt{[13]}$	This is our solution set in radical form.
3	
{.869, -1.535}	Our solution set presented as decimal approximations.

Using the Quadratic Formula will work on all types of quadratic equations, but factoring is quicker and easier if it is a possible choice for the equation.