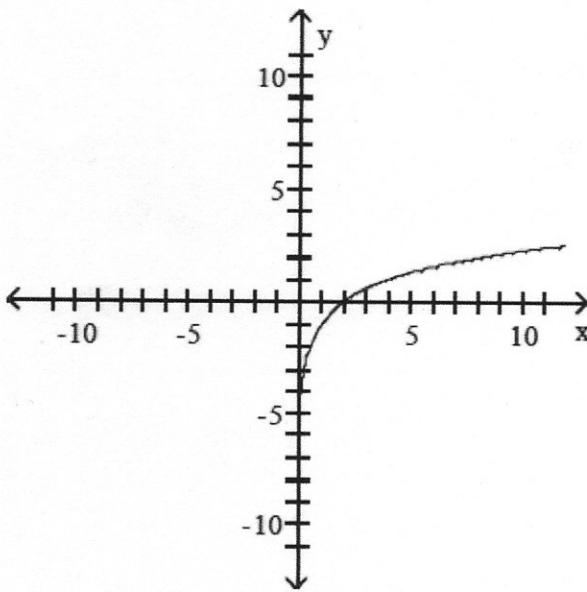


Q1. If $5^x = 6$, what does 5^{-2x} equal?

- a. $1/36$
- b. 36
- c. $1/12$
- d. -36

Q2. Solve the equation $3^x = 81$.

- a. $\{27\}$
- b. $\{5\}$
- c. $\{4\}$
- d. $\{3\}$


Q3. Change the exponential expression $5^{-3} = 1/125$ to an equivalent expression involving a logarithm.

- a. $\log_{-3} 1/125 = 5$
- b. $\log_5 1/125 = -3$
- c. $\log_5 -3 = 1/125$
- d. $\log_{1/125} 5 = -3$

Q4. Find the exact value of the logarithmic expression $\ln e$.

- a. 0
- b. -1
- c. 1
- d. e

Q5. The graph of a logarithmic function is shown. Select the function which matches the graph.

- a. $y = \log_2(x + 1)$
- b. $y = \log_2(x - 1)$
- c. $y = \log_2 x$
- d. $y = \log_2 x - 1$

Q6. Find the inverse of the function and state its domain and range.

$$\{(-3, 4), (-1, 5), (0, 2), (2, 6), (5, 7)\}$$

- a. $\{(3, 4), (1, 5), (0, 2), (-2, 6), (-5, 7)\}; D = \{3, 1, 0, -2, -5\}; R = \{2, 4, 5, 6, 7\}$
- b. $\{(-3, -4), (-1, -5), (0, -2), (2, -6), (5, -7)\}; D = \{-3, -1, 0, 2, 5\}; R = \{-7, -6, -5, -4, -2\}$
- c. $\{(4, -3), (5, -1), (2, 0), (6, 2), (7, 5)\} D = \{2, 4, 5, 6, 7\}; R = \{-3, -1, 0, 2, 5\}$
- d. $\{(3, -4), (1, -5), (0, -2), (-2, -6), (-5, -7)\}; D = \{3, 1, 0, -2, -5\}; R = \{-7, -6, -5, -4, -2\}$

Q7. Find the amount that results from the investment of \$480 invested at 6% compounded quarterly after a period of 3 years.

- a. \$573.90
- b. \$93.9
- c. \$565.42
- d. \$571.69

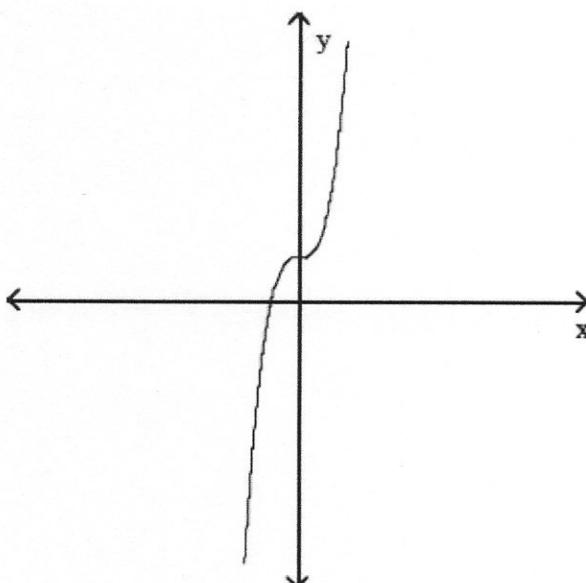
Q8. Write $\log_7 \sqrt{xy}/15$ as the sum and/or difference of logarithms. Express powers as factors.

- a. $(1/2) \log_7 xy - (1/2) \log_7 15$
- b. $(1/2) \log_7 x \cdot (1/2) \log_7 y \div (1/2) \log_7 15$
- c. $(1/2) \log_7 x + (1/2) \log_7 y - (1/2) \log_7 15$
- d. $(1/2) \log_7 x + (1/2) \log_7 y - \log_7 15$

Q9. The value of a particular investment follows a pattern of exponential growth. You invested money in a money market account. The value of your investment t years after your initial investment is given by the exponential growth model $A = 5100e^{0.047t}$. How much did you initially invest in the account?

- a. \$2550.00
- b. \$5345.42
- c. \$5100.00
- d. \$239.70

Q10. In 1990, the population of a country was estimated at 4 million. For any subsequent year the population, $P(t)$ (in millions), can be modeled by the equation $P(t) = 240/(5 + 54.99e^{-0.0208t})$,


where t is the number of years since 1990. Estimate the year when the population will be 21 million.

- a. approximately the year 2093
- b. approximately the year 2041
- c. approximately the year 2088
- d. approximately the year 2016

Q11. Solve the equation $\log_{72}(x^2 - x) = 1$.

- a. $\{-8, -9\}$
- b. $\{1, 72\}$
- c. $\{8, 9\}$
- d. $\{-8, 9\}$

Q12. Use the horizontal line test to determine whether the function is one-to-one.

- a. Yes
- b. No

Q13. Find the amount that results from the investment of \$12,000 invested at 5% compounded quarterly after a period of 8 years.

- a. \$5857.57
- b. \$17,729.47
- c. \$17,857.57
- d. \$17,637.10

Q14. Suppose that $\ln 2 = a$ and $\ln 5 = b$. Use properties of logarithms to write $\ln 10$ in terms of a and b.

- a. ab
- b. $a - b$
- c. $a + b$
- d. $\ln a + \ln b$

Q15. The half-life of silicon-32 is 710 years. If 100 grams is present now, how much will be present in 200 years? (Round your answer to three decimal places.)

- a. 14.192
- b. 82.263
- c. 98.066

d. 0

Q16. Express $6\log_b m - \log_b n$ as a single logarithm.

- a. $\log_b m^6 \div \log_b n$
- b. $\log_b (m^6 - n)$
- c. $\log_b (m^6/n)$
- d. $\log_b (6m/n)$

Q17. Find functions f and g so that $f \circ g = H(x) = (5 - 2x^3)^2$.

- a. $f(x) = 5 - 2x^3$; $g(x) = x^2$
- b. $f(x) = (5 - 2x)^3$; $g(x) = x^2$
- c. $f(x) = x^2$; $g(x) = 5 - 2x^3$
- d. $f(x) = x^3$; $g(x) = (5 - 2x)^2$

Q18. Solve the equation $(1/3) \log_2 (x + 6) = \log_8 (3x)$.

- a. $\{9\}$
- b. $\{3, 0\}$
- c. $\{3\}$
- d. \emptyset

Q19. A size 6 dress in Country C is size 52 in Country D. A function that converts dress sizes in Country C to those in Country D is $f(x) = 2(x + 20)$. Find a formula for the inverse of the function described.

- a. $f^{-1}(x) = (x - 20)/2$
- b. $f^{-1}(x) = x - 20$
- c. $f^{-1}(x) = (x/2) - 20$
- d. $f^{-1}(x) = (x/2) + 20$

Q20. Find the exact value of the logarithmic expression $\log_4 1/64$.

- a. $-1/3$
- b. -3
- c. $1/3$
- d. 3

Q21. Find the value of the determinant.

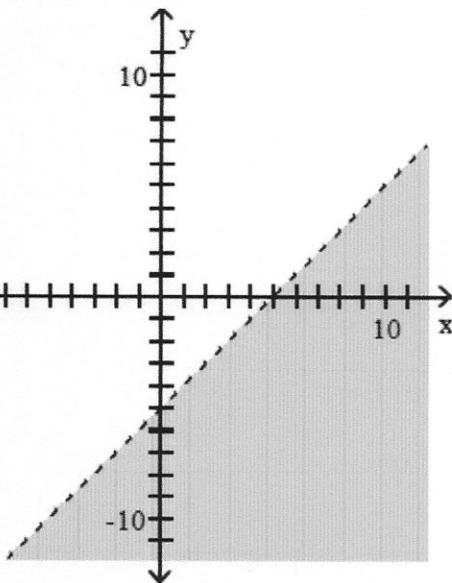
$$\begin{vmatrix} 9 & 3 \\ 3 & 4 \end{vmatrix}$$

- a. 45
- b. 27
- c. 15
- d. -27

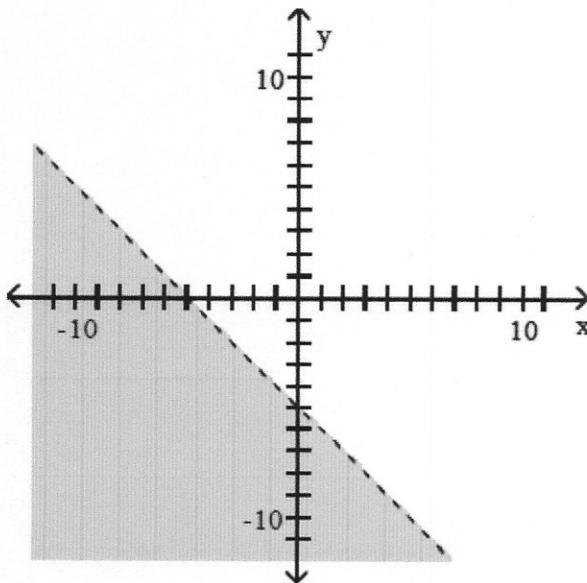
Q22. Find the value of the determinant.

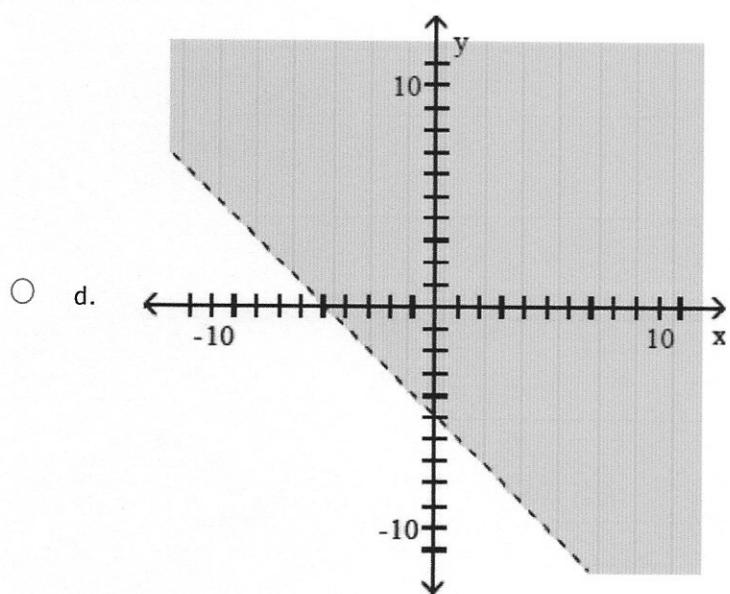
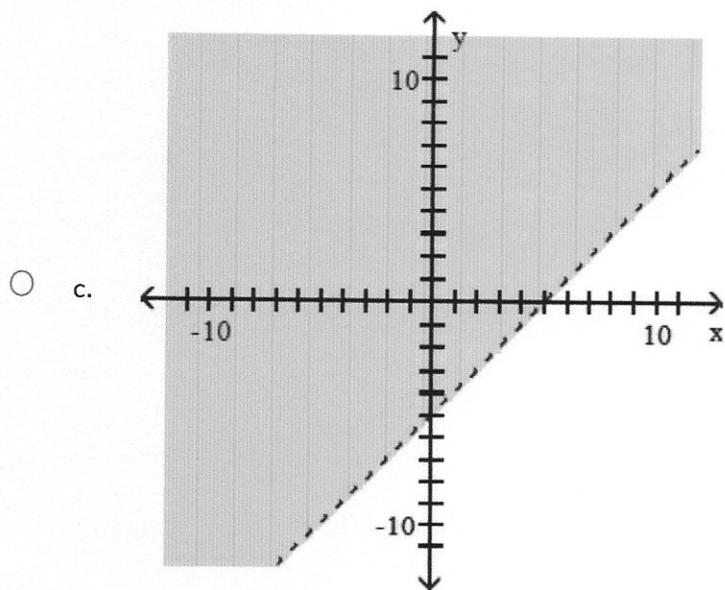
$$\begin{vmatrix} 4 & 2 & 2 \\ 2 & 5 & 3 \\ 4 & 1 & 6 \end{vmatrix}$$

- a. 224
- b. 24


- c. -72
- d. 72

Q23. Write the partial fraction decomposition of the rational expression $x/(x^2 - 9x + 20)$.


- a. $-4/(x - 4) + 5/(x - 5)$
- b. $-5/(x - 4) + 4/(x - 5)$
- c. $4/(x - 4) + -5/(x - 5)$
- d. $-4/(x - 4) + -5/(x - 5)$



Q24. Graph the inequality $x + y < -5$.

a.

b.

Q25. Find the inverse of the matrix. Be sure to check your answer.

$$\begin{bmatrix} 10 & 1 \\ -1 & 0 \end{bmatrix}$$

○ a.
$$\begin{bmatrix} 0 & -1 \\ -1 & 10 \end{bmatrix}$$

○ b.
$$\begin{bmatrix} 0 & 1 \\ 1 & 10 \end{bmatrix}$$

○ c.
$$\begin{bmatrix} 0 & 1 \\ -1 & 10 \end{bmatrix}$$

d.
$$\begin{bmatrix} 0 & -1 \\ 1 & 10 \end{bmatrix}$$

Q26. A dietitian needs to purchase food for patients. She can purchase an ounce of chicken for \$0.25 and an ounce of potatoes for \$0.03. Let x = the number of ounces of chicken and y = the number of ounces of potatoes purchased per patient. Write the objective function that describes the total cost per patient per meal.

- a. $z = 3y + 25y$
- b. $z = 0.25x + 0.03y$
- c. $z = 25x + 3y$
- d. $z = 0.03x + 0.25y$

Q27. Let $A = \begin{bmatrix} 8 & 6 & 6 \\ 9 & -2 & 8 \\ -2 & 4 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & -3 & -1 \\ 8 & 7 & 6 \\ 7 & 9 & 8 \end{bmatrix}$. Find $2A + 2B$.

- a.
$$\begin{bmatrix} 14 & 9 & 11 \\ 26 & 3 & 22 \\ 3 & 17 & 20 \end{bmatrix}$$
- b.
$$\begin{bmatrix} 6 & 3 & 5 \\ 17 & 5 & 14 \\ 5 & 13 & 14 \end{bmatrix}$$
- c.
$$\begin{bmatrix} 6 & 17 & 5 \\ 3 & 5 & 13 \\ 5 & 14 & 14 \end{bmatrix}$$
- d.
$$\begin{bmatrix} 12 & 6 & 10 \\ 34 & 10 & 28 \\ 10 & 26 & 28 \end{bmatrix}$$

Q28. Solve the system of equations using substitution.

$$\begin{cases} xy = 42 \\ x + y = -13 \end{cases}$$

- a. $x = -6, y = 7; x = -7, y = 6$ or $(-6, 7), (-7, 6)$
- b. $x = -6, y = -7; x = -7, y = -6$ or $(-6, -7), (-7, -6)$
- c. $x = 6, y = -7; x = 7, y = -6$ or $(6, -7), (7, -6)$
- d. $x = 6, y = 7; x = 7, y = 6$ or $(6, 7), (7, 6)$

Q29. Write the augmented matrix for the system.

$$\begin{cases} \frac{5}{2}x + \frac{2}{11}y = -\frac{1}{2} \\ \frac{2}{11}x - \frac{1}{2}y = \frac{1}{2} \end{cases}$$

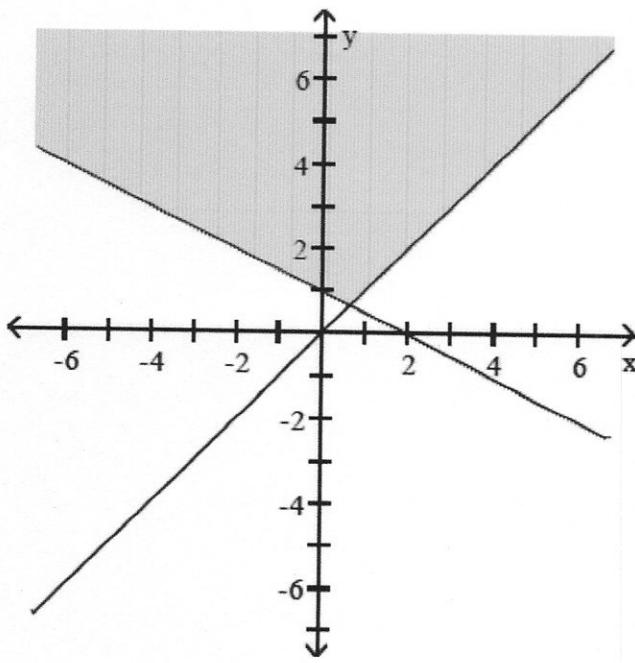
- a.
$$\left[\begin{array}{cc|c} \frac{5}{2} & \frac{2}{11} & \frac{1}{2} \\ \hline \frac{2}{11} & \frac{1}{2} & \frac{1}{2} \end{array} \right]$$
- b.
$$\left[\begin{array}{cc|c} \frac{5}{2} & \frac{2}{11} & -\frac{1}{2} \\ \hline \frac{2}{11} & \frac{1}{2} & -\frac{1}{2} \end{array} \right]$$
- c.
$$\left[\begin{array}{cc|c} \frac{5}{2} & \frac{2}{11} & -\frac{1}{2} \\ \hline \frac{2}{11} & -\frac{1}{2} & \frac{1}{2} \end{array} \right]$$
- d.
$$\left[\begin{array}{ccc|c} \frac{5}{2} & \frac{2}{11} & -\frac{1}{2} & 0 \\ \hline \frac{2}{11} & -\frac{1}{2} & \frac{1}{2} & 0 \end{array} \right]$$

Q30. Solve the system of equations using substitution.

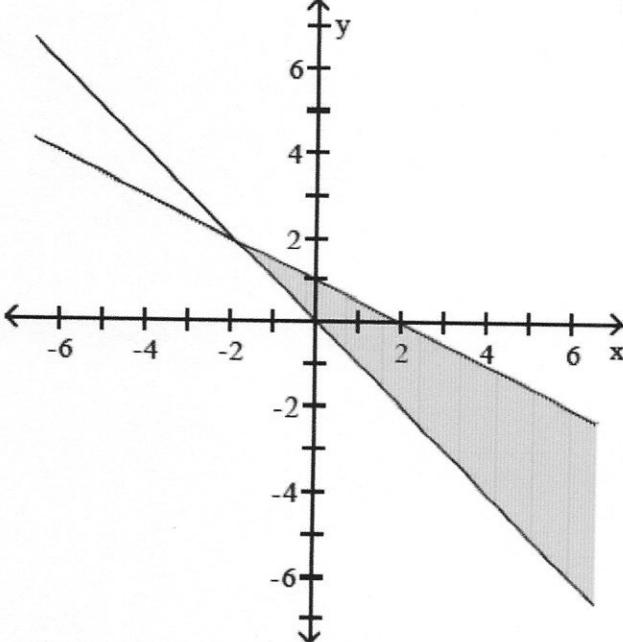
$$\begin{cases} y = x + 2 \\ y^2 = 8x \end{cases}$$

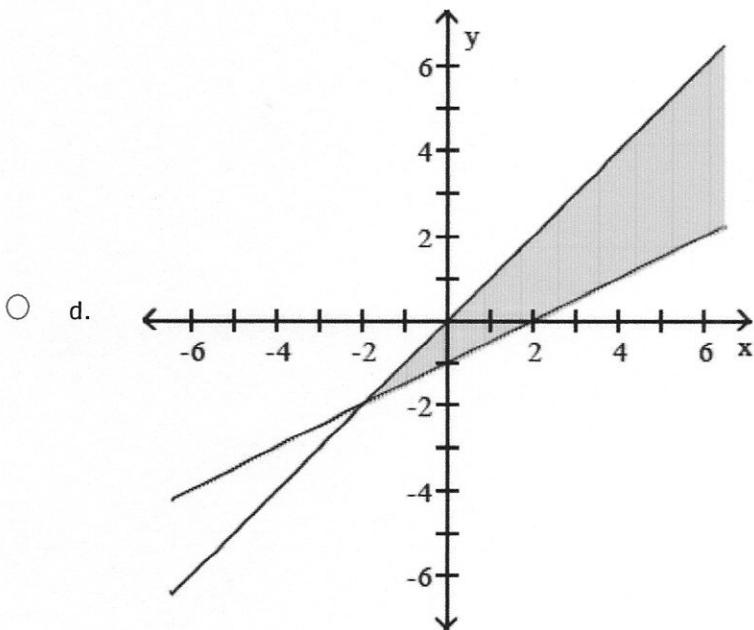
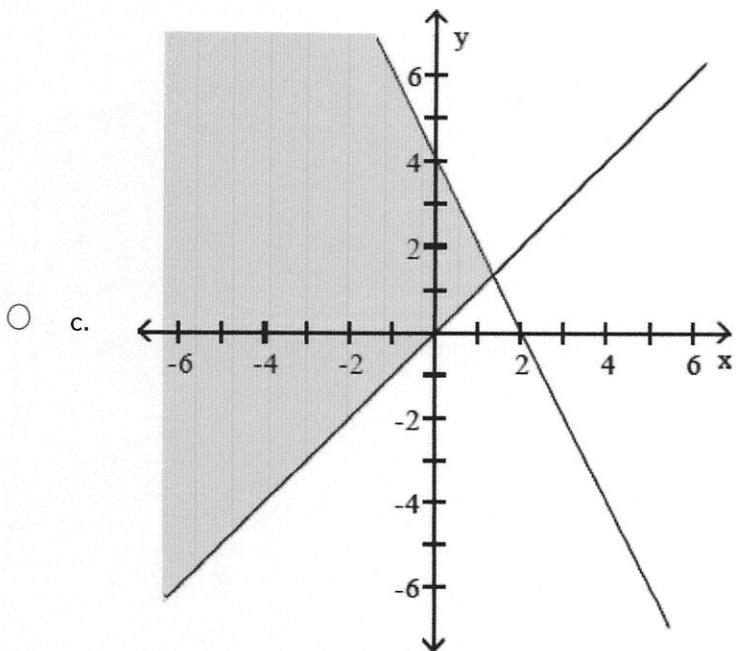
- a. $x = 2, y = 4; x = 2, y = -4; x = -2, y = 0$ or $(2, 4), (2, -4), (-2, 0)$
- b. $x = 2, y = 4; x = -2, y = 0$ or $(2, 4), (-2, 0)$
- c. $x = 2, y = 4; x = 2, y = -4$ or $(2, 4), (2, -4)$
- d. $x = 2, y = 4$ or $(2, 4)$

Q31. A flat rectangular piece of aluminum has a perimeter of 58 inches. The length is 7 inches


Q32. The perimeter of a rectangle is 20 inches and its area is 21 square inches. What are its dimensions?

- a. 2 in. by 6 in.
- b. 3 in. by 7 in.
- c. 4 in. by 6 in.
- d. 2 in. by 8 in.


Q33. Graph the solution set of the system of inequalities or indicate that the system has no solution.



$$\begin{cases} x + 2y \geq 2 \\ x - y \leq 0 \end{cases}$$

a.

b.

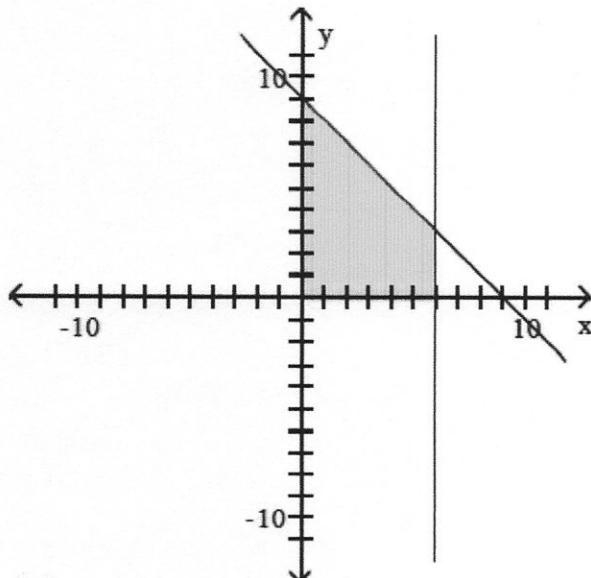
Q34. Write the partial fraction decomposition of the rational expression $(125 - 19x)/(x^3 - 10x^2 + 25x)$.

- a. $5/x + -5/(x - 5) + 12/(x - 5)^2$
- b. $-5/x + 5/(x - 5) + 6/(x - 5)^2$
- c. $5/x + 6/(x - 5) + -5/(x - 5)^2$
- d. $5/x + -5/(x - 5) + 6/(x - 5)^2$

Q35. Solve the system of equations using matrices (row operations). If the system has no solution, say that it is inconsistent.

$$\begin{cases} x - y + 5z = -9 \\ 3x + z = -2 \\ x + 3y + z = -5 \end{cases}$$

- a. $x = -2, y = -1, z = 0; (-2, -1, 0)$
- b. $x = -2, y = 0, z = -1; (-2, 0, -1)$
- c. $x = 0, y = -2, z = -1; (0, -2, -1)$
- d. $x = 0, y = -1, z = -2; (0, -1, -2)$


Q36. Write the partial fraction decomposition of the rational expression $(14x + 1)/[(x - 1)(x^2 + x + 1)]$.

- a. $5/(x - 1) + (4x - 5)/(x^2 + x + 1)$
- b. $5/(x - 1) + (-5x + 4)/(x^2 + x + 1)$
- c. $5/(x - 1) + -5/(x + 1) + 4/(x - 1)$
- d. $-5/(x - 1) + (5x + 4)/(x^2 + x + 1)$

Q37. Solve the linear programming problem. Minimize $z = 11x + 6y + 7$ subject to: $x = 0, y = 0, x + y = 1$.

- a. minimum: 7
- b. minimum: 18
- c. minimum: 24
- d. minimum: 13

Q38. Write a system of linear inequalities that has the given graph.

- a. $\begin{cases} y \geq 0 \\ x \geq 0 \\ x \leq 9 \\ y + x \leq 6 \end{cases}$

b.
$$\begin{cases} y \geq 0 \\ x \geq 0 \\ x \leq 6 \\ y + x \geq 9 \end{cases}$$

c.
$$\begin{cases} x \leq 6 \\ y + x \leq 9 \end{cases}$$

d.
$$\begin{cases} y \geq 0 \\ x \geq 0 \\ x \leq 6 \\ y + x \leq 9 \end{cases}$$

Q39. Solve the system of equations using Cramer's Rule if it is applicable.

$$\begin{cases} 3x + 8z = 64 \\ -6x + 2y + 7z = -5 \\ 4x - 4y = 16 \end{cases}$$

- a. $x = 9, y = 2, z = 5$; (9, 2, 5)
- b. $x = 8, y = 4, z = 5$; (8, 4, 5)
- c. $x = 4, y = 5, z = 4$; (4, 5, 4)
- d. $x = 8, y = -4, z = -5$; (8, -4, -5)

Q40. Solve the system of equations by substitution.

$$\begin{cases} 5x - 2y = -1 \\ x + 4y = 35 \end{cases}$$

- a. $x = 2, y = 9$; (2, 9)
- b. $x = 3, y = 9$; (3, 9)
- c. $x = 3, y = 8$; (3, 8)
- d. $x = 2, y = 8$; (2, 8)