Chapter 5

RAM Programs, Turing Machines,
and the Partial Recursive Functions

5.1 Partial Functions and RAM Programs

We define an abstract machine model for computing func-

tions
foXfx oo x 3= 3T

N~
n

where ¥ = {aq,...,ax} is some input alphabet.

Numerical functions f: N” — N can be viewed as func-
tions defined over the one-letter alphabet {a;}, using the
bijection m — a’".

Let us recall the definition of a partial function.
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A binary relation R C A x B between two sets A and B
is functional iff, for all x € A and y, z € B,

(x,y) € R and (z,z) € R implies that y = z.

A partial function is a triple f = (A, G, B), where A
and B are arbitrary sets (possibly empty) and G is a

functional relation (possibly empty) between A and B,
called the graph of f.

Hence, a partial function is a functional relation such that
every argument has at most one image under f.

The graph of a function f is denoted as graph(f). When
no confusion can arise, a function f and its graph are
usually identified.

A partial function f = (A, G, B) is often denoted as
f:A— B.
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The domain dom(f) of a partial function f = (A, G, B)
is the set

dom(f)={x € A|Jy e B, (z,y) € G}.

For every element © € dom(f), the unique element y € B
such that (z,y) € graph(f) is denoted as f(x). We say
that f(x) converges, also denoted as f(x) |.

If x € Aand x € dom(f), we say that f(x) diverges,
also denoted as f(x) 1.

Intuitively, if a function is partial, it does not return any
output for any input not in its domain. This corresponds
to an infinite computation.

A partial function f: A — B is a total function iff
dom(f) = A. It is customary to call a total function
simply a function.
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We now define a model of computation know as the RAM
programs, or Post machines.

RAM programs are written in a sort of assembly language
involving simple instructions manipulating strings stored
Into registers.

Every RAM program uses a fixed and finite number of
reqisters denoted as R1,..., Rp, with no limitation on
the size of strings held in the registers.

RAM programs can be defined either in flowchart form or
in linear form. Since the linear form is more convenient
for coding purposes, we present RAM programs in linear
form.

A RAM program P (in linear form) consists of a finite
sequence of instructions using a finite number of registers

R1,..., Rp.
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Instructions may optionally be labeled with line numbers
denoted as N1,..., Ngq.

It is neither mandatory to label all instructions, nor to
use distinct line numbers!

Thus, the same line number can be used in more than
one line. As we will see later on, this makes it easier to
concatenate two different programs without performing a
renumbering of line numbers.

Every instruction has four fields, not necessarily all used.
The main field is the op-code.
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Here is an example of a RAM program to concatenate

two strings x; and xs.

R3
R4
NO R4
R4

N1

N2

N3 Rl

%
%
jmp,
Jmp,,
jmp
add,
tail
jmp
addb
tail
jmp
%

continue

R1
R2
N1b
N2b
N3b
R3
R4
NOa
R3
R4
NOa
R3
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Definition 5.1. RAM programs are constructed from
seven types of instructions shown below:
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add;
tail
clr
<
jmp
jmp
jmp;
jmp;
continue

S

Nla
N1b
Nla
N1b
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An instruction of type (1;) concatenates the letter a; to
the right of the string held by register Y (1 < j < k).
The effect is the assignment

Y = Yaj

An instruction of type (2) deletes the leftmost letter of
the string held by the register Y. This corresponds to the
function tazl, defined such that

tail(e) = e,
tail(aju) = u.

The effect is the assignment

Y = tail(Y)
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An instruction of type (3) clears register Y, i.e., sets its
value to the empty string €. The effect is the assignment

Y =€

An instruction of type (4) assigns the value of register X
to register Y. The effect is the assignment

Y =X

An instruction of type (5a) or (5b) is an unconditional
jump.

The effect of (5a) is to jump to the closest line number
N1 occurring above the instruction being executed, and
the effect of (5b) is to jump to the closest line number
N1 occurring below the instruction being executed.
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An instruction of type (6,a) or (6;b) is a conditional jump.
Let head be the function defined as follows:

head(€) = e,

head(au) = a;.

The effect of (6;a) is to jump to the closest line num-
ber N1 occurring above the instruction being executed
iff head(Y) = a;, else to execute the next instruction
(the one immediately following the instruction being ex-
ecuted).

The effect of (6;0) is to jump to the closest line num-
ber N1 occurring below the instruction being executed
iff head(Y') = a;, else to execute the next instruction.

When computing over N, instructions of type (6;b) jump
to the closest N1 above or below iff Y is nonnull.
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An instruction of type (7) is a no-op, i.e., the registers
are unaffected. If there is a next instruction, then it is
executed, else, the program stops.

Obviously, a program is syntactically correct only if cer-
tain conditions hold.

Definition 5.2. A RAM program P is a finite sequence
of instructions as in Definition 5.1, and satisfying the fol-
lowing conditions:

(1) For every jump instruction (conditional or not), the
line number to be jumped to must exist in P.

(2) The last instruction of a RAM program is a continue.

The reason for allowing multiple occurences of line num-
bers is to make it easier to concatenate programs without
having to perform a renaming of line numbers.
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The technical choice of jumping to the closest address
N1 above or below comes from the fact that it is easy to
search up or down using primitive recursion, as we will
see later on.

For the purpose of computing a function
fo X x-oox ¥ — ¥* using a RAM program P, we

N

n
assume that P has at least n registers called input regis-
ters, and that these registers R1, ..., Rn are initialized
with the input values of the function f.

We also assume that the output is returned in register

R1.



5.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 381

The following RAM program concatenates two strings x
and x9 held in registers R1 and R2.

R3 — R1

R4 — R2
NO R4 jmp, N1b

R4 jmp, N2

jmp  N3b
N1 add, R3
tail R4

jmp NOa
N2 add, R3
tail R4

jmp  NOa
N3 Rl — R3

continue

Since ¥ = {a, b}, for more clarity, we wrote jmp, instead
of jmp,, jmp, instead of jmp,, add, instead of add;, and
add, instead of adds.
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Definition 5.3. A RAM program P computes the par-
tial function ¢: (X*)" — X* if the following conditions
hold: For every input (zy,...,z,) € (X*)", having ini-
tialized the input registers R1,..., Rn with z1,..., z,,
the program eventually halts iff o(x1, ..., z,) converges,
and if and when P halts, the value of R1 is equal to
o(x1,...,x,). A partial function ¢ is RAM-computable
iff it is computed by some RAM program.

For example, the following program computes the erase
function E defined such that

E(u)=c¢

for all u € >*:

clr R1

continue
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The following program computes the jth successor func-
tion S; defined such that

Si(u) = ua,

for all u € >*:

addj Rl

continue

The following program (with n input variables) computes
the projection function P defined such that

Pz-"(ul, c . ,Un) = Uy,
wheren > 1, and 1 < < n:

Rl « Ra

continue

Note that P! is the identity function.
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Having a programming language, we would like to know
how powerful it is, that is, we would like to know what
kind of functions are RAM-computable.

At first glance, RAM programs don’t do much, but this
is not so. Indeed, we will see shortly that the class of
RAM-computable functions is quite extensive.

One way of getting new programs from previous ones is
via composition. Another one is by primitive recursion.

We will investigate these constructions after introducing
another model of computation, Turing machines.

Remarkably, the classes of (partial) functions computed
by RAM programs and by Turing machines are identical.

This is the class of partial recursive function. This class
can be given several other definitions.
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The following Lemma will be needed to simplify the en-
coding of RAM programs as numbers.

Lemma 5.1. Fvery RAM program can be converted
to an equivalent program only using the following type
of instructions:

(13) N addj Y
(2) N tail Y
(6;a) N'Y jmp, Nla
(6;b) N Y jmp, N1b
(

7) N  continue

The proot is fairly simple. For example, instructions of
the form

Ri +— Ry
can be eliminated by transferring the contents of R into

an auxiliary register Rk, and then by transferring the
contents of Rk into Ri and Rj.
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5.2 Definition of a Turing Machine

We define a Turing machine model for computing func-
tions

FrStx X O

n
where ¥ = {aq,...,ax} is some input alphabet. We

only consider deterministic Turing machines.

A Turing machine also uses a tape alphabet 1" such that

> C I'. The tape alphabet contains some special symbol
B ¢ ¥, the blank.

In this model, a Turing machine uses a single tape. This
tape can be viewed as a string over I'. The tape is both
an input tape and a storage mechanism.

Symbols on the tape can be overwritten, and the tape
can grow either on the left or on the right. There is a
read /write head pointing to some symbol on the tape.



5.2. DEFINITION OF A TURING MACHINE 387

Definition 5.4. A (deterministic) Turing machine (or
TM) M isasextuple M = (K, ¥, ', {L, R}, 9, qy), where

e K is a finite set of states:

e ). is a finite input alphabet;

e [' is a finite tape alphabet, st. X C I, KNI =0,
and with blank B ¢ ¥;

e gy € K is the start state (or initial state);

e 0 is the transition function, a (finite) set of quintu-
ples
JCKxI'xI'x{L,R} x K,
such that for all (p,a) € K x I', there is at most
one triple (b,m,q) € I' x {L, R} x K such that
(p,a,b,m,q) € 9.
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A quintuple (p,a,b,m,q) € ¢ is called an instruction.
It is also denoted as

p,a — b,m,q.

The effect of an instruction is to switch from state p to
state g, overwrite the symbol currently scanned a with b,
and move the read /write head either left or right, accord-
Ing to m.

Here is an example of a Turing machine.
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K ={q,q,q,q¢};
¥ =1{a,b};
['={a,b, B};

The instructions in & are:

q0, B — B, R, g3,
o, a — b, R, q1,
qo, b — a, R, q1,
qi,a — b, R, q,
q1,b — a, R, q,
@, B — B, L,q,
q2,a — a, L, qo,
q2,b — 0, L, go,
¢, B — B, R, gs.
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5.3 Computations of Turing Machines

To explain how a Turing machine works, we describe its
action on Instantaneous descriptions. We take advan-

tage of the fact that K N I" = () to define instantaneous
descriptions.

Definition 5.5. Given a Turing machine
M = <K7 27 F: {L7 R}7 57 qO)?

an instantaneous description (for short an ID) is a
(nonempty) string in I'™* KT'", that is, a string of the form

upav,

where u,v € I'", pe K,and a €T

The intuition is that an ID upav describes a snapshot
of a TM in the current state p, whose tape contains the
string uav, and with the read /write head pointing to the
symbol a.
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Thus, in upav, the state p is just to the left of the symbol
presently scanned by the read /write head.

We explain how a TM works by showing how it acts on
ID’s.

Definition 5.6. Given a Turing machine
M = (Ka 27 F) {La R}7 57 QO),

the yield relation (or compute relation) = is a binary
relation defined on the set of ID’s as follows. For any two

ID’s I Dy and 1Dy, we have I Dy - 1D, iff either
(1) (p,a,b, R,q) € 9, and either
(a) IDy = upacv, ¢ € I', and I Dy = ubqcv, or
(b) IDy = upa and I Dy = ubqB;
or
(2) (p,a,b, L,q) € 9, and either

(a) IDy = ucpav, ¢ € I', and I Dy = uqcbv, or
(b) IDy = pav and I Dy = qBbw.
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Note how the tape is extended by one blank after the
rightmost symbol in case (1)(b), and by one blank before
the leftmost symbol in case (2)(b).

As usual, we let FT denote the transitive closure of F,
and we let F* denote the reflexive and transitive closure

of I-.

We can now explain how a Turing machine computes a
partial function

fr2"x o x X — 3T,

N~
n

Since we allow functions taking n > 1 input strings, we
assume that I" contains the special delimiter , not in X,
used to separate the various input strings.

[t is convenient to assume that a Turing machine “cleans
up’ its tape when it halts, before returning its output.
For this, we will define proper ID’s.
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Definition 5.7. Given a Turing machine
M = (K7 27 Fa {L7 R}7 57 QO),

where [' contains some delimiter , not in > in addition to
the blank B, a starting ID is of the form

qowi, w2, . .., Wy,
where wy, ..., w, € X* and n > 2, or gow with w € X7,

or quob3.

A blocking (or halting) ID is an ID upawv such that there
are no instructions (p, a,b,m,q) € 6 for any (b, m,q) €
['x {L,R} x K.

A proper ID is a halting ID of the form
BfpwB',

where w € ¥* and k,1 > 0 (with [ > 1 when w = €).
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Computation sequences are defined as follows.

Definition 5.8. Given a Turing machine
M = (K7 27 Fa {L7 R}7 57 QO),

a computation sequence (or computation) is a finite or
infinite sequence of ID’s

IDy,IDy,...,I1D;,ID;.q,...,
such that ID; = ID;,q for all + > 0.

A computation sequence halts iff it is a finite sequence of
ID’s, so that
IDy " ID,,

and D, is a halting ID.

A computation sequence diverges if it is an infinite se-
quence of ID’s.

We now explain how a Turing machine computes a partial
function.
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Definition 5.9. A Turing machine
M = (K7 27 F) {L7 R}7 57 QO)
computes the partial function

foltx oo x X — 3"

v
n

iff the following conditions hold:
(1) For every wy, ..., w, € 3*, given the starting ID
I Dy = qown,we, . .. wy,

or qow with w € X7, or ¢uB, the computation se-
quence of M from 1D, halts in a proper ID
ift f(ws,...,w,) is defined.

(2) If f(wy,...,w,) is defined, then M halts in a proper
ID of the form

ID, = Bpf(w, ..., w,)B"

which means that it computes the right value.



396 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

A function f (over ¥*) is Turing computable iff it is
computed by some Turing machine M.

Note that by (1), the TM M may halt in an improper
ID, in which case f(wq, ..., w,) must be undefined. This
corresponds to the fact that we only accept to retrieve
the output of a computation if the T'M has cleaned up its
tape, i.e., produced a proper ID. In particular, interme-
diate calculations have to be erased before halting.
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FErample.

K = {QO7Q17q27Q3};
¥ ={a,b};
['={a,b, B};

The instructions in & are:

q0, B — B, R, g3,
qo,a — b, R, q1,
q0,b — a, R, q1,
q,a — b, R, q,
q1,b = a, R, q,
q,B — B, L, q,
q2,a — a, L, q,
q2,b — b, L, qo,
¢, B — B, R, qgs.

The reader can easily verify that this machine exchanges
the a’s and b’s in a string. For example, on input w =
aaababb, the output is bbbabaa.
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5.4 RAM-computable functions are Turing-computable

Turing machines can simulate RAM programs, and as a
result, we have the following Theorem.

Theorem 5.2. Fvery RAM-computable function 1is
Turing-computable. Furthermore, given a RAM pro-
gram P, we can effectively construct a Turing ma-
chine M computing the same function.

The idea of the proof is to represent the contents of the
registers R1,... Rp on the Turing machine tape by the
string

HrLFr29 - FT DA

Where # is a special marker and r represents the string
held by Rz, We also use Lemma 5.1 to reduce the number
of instructions to be dealt with.
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The Turing machine M is built of blocks, each block sim-
ulating the effect of some instruction of the program P.
The details are a bit tedious, and can be found in the
notes or in Machtey and Young.
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5.5 Turing-computable functions are RAM-computable

RAM programs can also simulate Turing machines.

Theorem 5.3. Every Turing-computable function s
RAM-computable. Furthermore, given a Turing ma-
chine M, one can effectively construct a RAM pro-
gram P computing the same function.

The idea of the proof is to design a RAM program con-
taining an encoding of the current ID of the Turing ma-
chine M in register R1, and to use other registers R2, R3
to simulate the effect of executing an instruction of M by
updating the ID of M in R1.

The details are tedious and can be found in the notes.
Another proof can be obtained by proving that the class

of Turing computable functions coincides with the class
of partial recursive functions.
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Indeed, it turns out that both RAM programs and Turing
machines compute precisely the class of partial recursive
functions (see Section 5.8).

For this, we need to define the primitive recursive func-
tions.

Informally, a primitive recursive function is a total recur-
sive function that can be computed using only for loops,
that is, loops in which the number of iterations is fixed
(unlike a while loop).

A formal definition of the primitive functions is given in
Section 5.7.

Definition 5.10. Let ¥ = {aq,...,ax}. The class of
partial recursive functions is the class of partial func-
tions (over X*) that can be computed by RAM programs
(or equivalently by Turing machines).

The class of (total) recursive functions is the subset
of the class of partial recursive functions consisting of
functions defined for every input (i.e., total functions).

We can also deal with languages.
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5.6 Recursively Enumerable Languages and Recursive
Languages

We define the recursively enumerable languages and the
recursive languages. We assume that the TM’s under
consideration have a tape alphabet containing the special
symbols 0 and 1.

Definition 5.11. Let ¥ = {ay,...,an}. A language
L C X* is recursively enumerable (for short, an r.e.
set) iff there is some TM M such that for every w € L,
M halts in a proper ID with the output 1, and for every
w & L, either M halts in a proper ID with the output 0,
or it runs forever.

A language L C X* is recursive iff there is some TM M
such that for every w € L, M halts in a proper ID with
the output 1, and for every w ¢ L, M halts in a proper
ID with the output 0.
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Thus, given a recursively enumerable language L, for
some w ¢ L, it is possible that a TM accepting L runs
forever on input w. On the other hand, for a recursive
language L, a TM accepting L always halts in a proper
ID.

When dealing with languages, it is often useful to consider
nondeterministic Turing machines. Such machines are
defined just like deterministic Turing machines, except
that their transition function ¢ is just a (finite) set of
quintuples

C K xI'xI'x{L,R} x K,

with no particular extra condition.
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[t can be shown that every nondeterministic Turing ma-
chine can be simulated by a deterministic Turing machine,
and thus, nondeterministic Turing machines also accept
the class of r.e. sets.

It can be shown that a recursively enumerable language is
the range of some recursive function. It can also be shown
that a language L is recursive iff both L and its comple-
ment are recursively enumerable. There are recursively
enumerable languages that are not recursive.
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Turing machines were invented by Turing around 1935.
The primitive recursive functions were known to Hilbert
circa 1890. Godel formalized their definition in 1929. The
partial recursive functions were defined by Kleene around
1934.

Church also introduced the A-calculus as a model of com-
putation around 1934. Other models: Post systems, Markov
systems. The equivalence of the various models of compu-
tation was shown around 1935/36. RAM programs were
only defined around 1963 (they are a slight generalization
of Post system).

A further study of the partial recursive functions requires
the notions of pairing functions and of universal functions
(or universal Turing machines).





