

Name _____
R number _____

TA _____
Laboratory Date _____ Section _____

$$[\text{HCl}]_{\text{add}} = [\text{HCl}]_{\text{stock}} \times \frac{V_{\text{stock}}}{V_{\text{tot}}}$$

$$[\text{HCl}]_{\text{add}} = \underline{\quad} \text{M}$$

b. Calculate $[\text{NaOH}]_{\text{add}}$ using $[\text{NaOH}]_{\text{stock}}$, V_{stock} , and V_{tot} from **DII.3a**, **DII.3b**, and **DII.3c**, respectively in:

$$[\text{NaOH}]_{\text{add}} = [\text{NaOH}]_{\text{stock}} \times \frac{V_{\text{stock}}}{V_{\text{total}}}$$

$$[\text{NaOH}]_{\text{add}} = \underline{\quad} \text{M}$$

3. Distilled water: Theoretical pH values

a. For 0 mL acid/base addition: pH = 7.0
b. Acid addition: determine pH by the following three-step calculation using the total added volume of acid solution (V_{acid} in mL) from column 2 of Data Table III:

$$\text{i. } n_{\text{H}_3\text{O}^+} = V_{\text{acid}} \times \frac{1 \text{ L}}{10^3 \text{ mL}} \times [\text{HCl}]_{\text{add}}$$

$$\text{ii. } [\text{H}_3\text{O}^+] = \frac{n_{\text{H}_3\text{O}^+}}{50 \text{ mL} + V_{\text{acid}}} \times \frac{10^3 \text{ mL}}{1 \text{ L}}$$

$$\text{iii. } \text{pH} = -\log([\text{H}_3\text{O}^+])$$

c. Base addition: determine pH by the following four-step calculation using the total added volume of base solution (V_{base} in mL) from column 2 of Data Table IV:

$$\text{i. } n_{\text{OH}^-} = V_{\text{base}} \times \frac{1 \text{ L}}{10^3 \text{ mL}} \times [\text{NaOH}]_{\text{add}}$$

$$\text{ii. } [\text{OH}^-] = \frac{n_{\text{OH}^-}}{50 \text{ mL} + V_{\text{base}}} \times \frac{10^3 \text{ mL}}{1 \text{ L}}$$

$$\text{iii. } \text{pOH} = -\log([\text{OH}^-])$$

$$\text{iv. } \text{pH} = 14 - \text{pOH}$$

4. Buffer solution: Theoretical pH values

a. For 0 mL acid/base added: use eq. (6) with n_{A^-} and n_{HA} from **AII.1a-b**, respectively, and $n_{\text{BA}} = 0$
b. Acid addition in the buffering region ($n_{\text{A}^-} > n_{\text{BA}}$): use the lower sign version of eq. (6) with n_{A^-} and n_{HA} from **AII.1a-b**, respectively, and $n_{\text{BA}} = n_{\text{H}_3\text{O}^+}$ from **AII.3b(i)**.
c. Base addition in the buffering region ($n_{\text{HA}} > n_{\text{BA}}$): use the upper sign version of eq. (6) with n_{A^-} and n_{HA} from **AII.1a-b**, respectively, and $n_{\text{BA}} = n_{\text{OH}^-}$ from **AII.3c(i)**.