

Challenge Problems

1. Be sure to attach a hand - sketch for this problem.
 - (a) First draw -245° in standard position.
 - (b) Now draw the reference angle of -245° in the same diagram. Do not find the value, just draw it.
 - (c) Use the drawing in part (b) to find the value of the reference angle.
2. Find the exact value of the following expression which basically stands for the sum of $\cos 1^\circ, \cos 2^\circ, \cos 3^\circ$ all the way up to $\cos 179^\circ$. Do not use a calculator.
$$\cos 1^\circ + \cos 2^\circ + \cos 3^\circ + \dots + \cos 178^\circ + \cos 179^\circ$$

Hints: See the hints below.

- i. Start by establishing a relationship between the last term $\cos 179^\circ$ and the first term $\cos 1^\circ$. To establish the relationship, first draw 179° in standard position and find its reference angle. Then use the reference angle and the quadrant in which 179° lies to rewrite $\cos 179^\circ$ in terms of $\cos 1^\circ$. This will help you evaluate $\cos 1^\circ + \cos 179^\circ$.
- ii. Follow the above method to evaluate the intermediate sums $\cos 2^\circ + \cos 178^\circ, \cos 3^\circ + \cos 177^\circ$ and so on.
3. A person's blood pressure follows a sine wave corresponding to the beats of the heart. A particular individual's blood pressure at time t (measured in minutes) is $P(t) = 20 \sin(160\pi t) + 110$.

What does this tell us about the person's (a) heart rate, (b) systolic and diastolic blood pressure?

4. Determine the amplitude, period, and phase shift for the function $y = \pi \cos\left(\frac{1}{\pi}x - \frac{1}{3}\right)$. Then graph one period of the function using a graphing utility such as [Graphmatica](#), [Desmos](#) or something of your choice. Hand sketches will not be accepted.

Note: Some graphing tips can be found in the “Math Calculator and Graphing Resources” page under the “Course Specific Information” module.