

6.1 | Fundamentals: Number Theory

Test in WEEK 3 : INTEGERS AND INDEXED STRUCTURES

19

FEB

①

STATUS

1

Which of the following is a possible value for x such that $x|74$?

10 Points

- $x = 3$
- $x = 37$
- $x = 148$

2

Which of the following is a possible value for x such that $12|x$?

10 Points

- $x = 4$
- $x = 30$
- $x = 96$

3

Solve:

100 div 8 =

10 Points

- 12
- 4
- 8
- 12.5

4

Solve:

$$100 \bmod 8 =$$

10 Points

- 12
- 4
- 8
- 0

5What is $\gcd(625, 1000)$?

10 Points

- 5
- 25
- 125
- 5000

6What is $\gcd(243, 2000)$?

10 Points

- 1
- 405
- 486000

7What is $\text{lcm}(625, 1000)$?

10 Points

- 5
- 25
- 125
- 5000

8What is $\text{lcm}(243, 2000)$?

10 Points

- 1
- 405
- 486000

9

Which number is **relatively prime** to 60?

10 Points

- 2
- 3
- 5
- 25
- 49
- 360

10

Compute: $12 \bmod 5$

10 Points

- 7
- 2
- 10
- 5

11

Compute: $-1 \bmod 7$

10 Points

- 1
- 8
- 8
- 6

12**Compute:** $144 \bmod 7$.

10 Points

- 144
- 4
- 20
- 7

13**Compute:** $199 \bmod 19$

10 Points

- 199
- 10
- 9
- 19

14**Compute:** $-101 \bmod 13$

10 Points

- 10
- 6
- 3
- 9

15**Compute:** $2 \cdot 3 \bmod 5$

10 Points

- 1
- 2
- 3
- 4
- 5

16**Find the inverse of 3 (mod 5)**

10 Points

- 1
- 2
- 3
- 4
- 5

17**Find the inverse of 4 (mod 5)**

10 Points

- 2
- 5
- 7
- 9

18**Find the inverse of 2 (mod 17)**

10 Points

- 1
- 8
- 9
- 10

19**Solve the linear congruence:**

$$3x \equiv 4 \pmod{5} \text{ for } x$$

10 Points

- 1
- 2

3 4**20****Solve the linear congruence:**

$$4x \equiv 5 \pmod{9} \text{ for } x$$

10 Points

 $x \equiv 7 \pmod{9}$ $x \equiv 5 \pmod{9}$ $x \equiv 10 \pmod{9}$ $x \equiv 8 \pmod{9}$ **21****Solve the linear congruence:**

$$2x \equiv 7 \pmod{17} \text{ for } x$$

10 Points

 $x \equiv 11 \pmod{17}$ $x \equiv 9 \pmod{17}$ $x \equiv 7 \pmod{17}$ $x \equiv 12 \pmod{17}$ **22**Suppose that a and b are integers such that $a \equiv 12 \pmod{5}$ and $b \equiv 3 \pmod{5}$.**Given:** $c \equiv a \cdot b \pmod{5}$ **Find** c in \mathbb{Z}_5

10 Points

 3 12 36 1

23 Suppose that a and b are integers such that $a \equiv 11 \pmod{19}$ and $b \equiv 3 \pmod{19}$.

Given $c \equiv 8 \cdot b \pmod{19}$: **find** c in Z_{19}

10 Points

- 12
- 24
- 5
- 8

24 Give the solution to $190 \div 9$ using the **Division Algorithm**

10 Points

Enter your response

25 A parking lot has 31 visitor spaces number from 0 to 30. Visitors are assigned parking spaces using the hashing function $h(k) = k \pmod{31}$, where k is the number formed by the first three digits of the visitor's license plate.

What space is assigned to a license plate beginning with 317?

10 Points

- 0
- 3
- 7
- 31

26 A parking lot has 31 visitor spaces number from 0 to 30. Visitors are assigned parking spaces using the hashing function $h(k) = k \pmod{31}$, where k is the number formed by the first three digits of the visitor's license plate.

What space is assigned to a license plate beginning with 918?

10 Points

- 29
- 19
- 18
- 0

27

The U.S. Postal Service sells money orders identified by an 11 digit number $x_1x_2x_3\dots x_{11}$. The first ten digits are an identifier; x_{11} is a check digit that satisfies $x_{11} = x_1 + x_2 + \dots + x_{10} \pmod{9}$

Find the check digit for the USPS money order ID number that begins with 7555618873.

10 Points

- $x_{11} = 1$
- $x_{11} = 8$
- $x_{11} = 4$
- $x_{11} = 5$

28

Retail products are identified by their Universal Product Code. This is commonly a 12 digit number $x_1x_2x_3\dots x_{12}$. The first 11 digits are an identifier; x_{12} is a check digit that satisfies $3x_1 + x_2 + 3x_3 + x_4 + 3x_5 + x_6 + 3x_7 + x_8 + 3x_9 + x_{10} + 3x_{11} + x_{12} = 0 \pmod{10}$.

Is 987650432103 a valid UPC code?

10 Points

- Yes
- No. The check digit should be 2.
- No. The check digit should be 1.
- No. The check digit should be 0.

29

All books are identified by an International Standard Book Number (ISBN). This is usually a 10 digit number $x_1x_2x_3\dots x_{10}$. The first 9 digits are an identifier; x_{10} is a check digit that satisfies

$$x_{10} = \sum_{i=1}^9 ix_i \pmod{11}$$

Determine the check digit for the ISBN number that begins with 007119882

10 Points

- 2
- 4
- X
- 0

30

What would the encrypted value of "2017" be after applying RSA encryption with the following values:

$$\begin{aligned}p &= 103 \\q &= 173 \\e &= 47\end{aligned}$$

10 Points

- 1372
- 6719
- 17,544
- 17,819
- 13,201

Submit

Comments
