1. [bookmark: _GoBack]In the Grand Tour problem, you are given a list of n cities along with their pairwise distances (i.e., you know the distance between every two cities). All distances are positive and symmetric (the distance between A and B is equal to the distance between B and A). You begin at a specified city C0, and must perform a ‘tour’, in which you visit every other city exactly once, and then return to C0. The goal is to minimize the total distance traveled.
Design a reasonable greedy algorithm for solving this problem. Does it always find the correct answer (i.e., the shortest tour)? If yes, prove that it is always correct, and if no, provide a counterexample.
2. You are given a series of boxes. Each box i has a rectangular base with width Wi and length Li, as well as a height Hi. You are stacking the boxes, subject to the following: In order to stack a box i on top of a second box j, the width of box i must be strictly less than the width of box j and the length of box i must be strictly less than the length of box j (assume that you cannot rotate the boxes to turn the width into the length). Your job is to make a stack of boxes with total height as large as possible. You can only use one copy of each box. Design a dynamic programming algorithm to solve this problem.
Part a: Draw and explain the DAG corresponding to this problem. Hint: What is a reasonable way to sort the boxes so that all edges go from earlier nodes to later nodes?
Part b: Describe an efficient algorithm to determine the height of the tallest possible stack. You do not need to write pseudocode (though you can if you want to), but in order to get full credit, you must include all the details that someone would need to implement the algorithm. Hint: think about what the subproblems should be.
3. There is a set of n employees E1,...,En, and a set of tasks T1,...,Tn. Each employee must be assigned to one task, and every task must be assigned to an employee. Each task Ti has a difficulty level di, and each employee has a skill level si. The goal is to match employees to tasks such that the average difference between each employee’s skill level and his or her task’s difficulty level is minimized.
In other words, if employee Ei is matched to task Tf(i), we wish to minimize
[image: ]
.
Part a: Consider the algorithm that begins with with employee E1, and assigns that employee the task with the difficulty level that is closest to E1’s skill level. Remove E1 and the selected task from the pool, and assign employee E2 the task with difficulty level closest to E2’s skill level. Repeat until all employees and tasks are matched. Give a counterexample showing when this method fails to find the optimal solution.
Part b: Describe an O(n log n) algorithm to find the optimal solution.
4. You have a set of coins. Each coin i has value vi. Your goal is to find a set of coins with total value exactly equal to V . You can use only one copy of each coin. Design a dynamic programming algorithm to determine whether it is possible to accomplish this. You don’t need to output which coins are used, just whether it is possible or not. Hint: this is similar to, but not the same as, the knapsack problem without item repetition. Like we did in the edit distance problem and the knapsack without repetition problem, you will need a 2-dimensional DAG. Define P(i,W) = True if you can get value W using coins 1,...,i. How do you calculate P(i,W) using subproblems?
5. In class, we learned that if a network has integer edge capacities, thenthe network flow algorithm will find an integer flow. If the edges all have even edge capacities, will the network flow algorithm find a flow in which the amount of flow sent along each edge is even?
6: Suppose that you are trying to find a max flow in a directed graph. However, instead of having capacities on the edges, you have capacities on the nodes. In other words, each node can only accept a certain amount of total incoming flow. (Can you think of a real-life application for this kind of problem?) Show how to find a max flow in such a case. Hint: like we did in class, think about how to modify the graph, rather than the algorithm.
7. Suppose you have a set of N project managers and 2N software engineers. Each project manager is only willing to work with certain software engineers. The software engineers have no preferences. Design an algorithm to divide this group into N teams, each containing one project manager and two software engineers, such that the project manager preferences are not violated (i.e., no project manager has to work with a software engineer that they don’t want to work with).
1
1
3
image1.png
n

> lsi —dy)

1
n




