

Homework 7
due Nov 10, 10pm

1. Let $R = \begin{pmatrix} 0 & 1 & -1 & 0 & 17 \\ 0 & 0 & 0 & 1 & 20 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, and consider the equation $R\mathbf{x} = \mathbf{b}$, with $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{pmatrix}$.

- a) What conditions must the entries of \mathbf{b} satisfy in order for $A\mathbf{x} = \mathbf{b}$ to have a solution?
- b) What is the nullspace of R ? (Write it in terms of a basis.)
- c) Assuming that the conditions in (a) are satisfied, what is a particular solution \mathbf{x}_p to $A\mathbf{x} = \mathbf{b}$? (You can set the free variables to anything when finding \mathbf{x}_p ; but please set them to zero here.)
- d) What is the full solution to $A\mathbf{x} = \mathbf{b}$?

There are two good ways to write the full solution. If a basis for $N(A)$ consists of some \mathbf{v}_3 and \mathbf{v}_5 , you can write

$$\mathbf{x} = x_3\mathbf{v}_3 + x_5\mathbf{v}_5 + \mathbf{x}_p.$$

Alternatively, you can write

$$\mathbf{x} \in \langle \mathbf{v}_3, \mathbf{v}_5 \rangle + \mathbf{x}_p.$$

In the second option, you are thinking of $N(A) + \mathbf{x}_p = \langle \mathbf{v}_3, \mathbf{v}_5 \rangle + \mathbf{x}_p$ as a *set*, and saying that \mathbf{x} must belong to this set.

2. Let $R = \begin{pmatrix} 1 & 0 & 42 & 0 & -9 \\ 0 & 1 & 300 & 0 & 10 \\ 0 & 0 & 0 & 1 & 11/5 \end{pmatrix}$. Write down the full solution to $R\mathbf{x} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

(Please set free variables to zero when finding an \mathbf{x}_p .)

3. Let $A = \begin{pmatrix} 1 & 5 & 2 & -4 \\ 1 & 5 & 3 & -1 \\ 1 & 5 & 2 & -3 \\ 0 & 0 & -2 & -6 \end{pmatrix}$ and consider the equation $A\mathbf{x} = \mathbf{b}$ with $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$.

- a) Write down the augmented matrix $(A | \mathbf{b})$ and use row operations to transform it to $(R | \mathbf{b}')$.

- b) Which invertible matrix M implements these row operations? In other words, find the explicit M such that $MA = R$ (and $M\mathbf{b} = \mathbf{b}'$).

There are two good ways to do this. Either keep track of all the elimination matrices and multiply them out. Or start with an augmented matrix $(A | I)$ and use row operations to transform it to $(R | M)$.

- c) What condition must the entries of \mathbf{b} satisfy in order for a solution to exist?
- d) Assuming the condition in (c), write down the full solution.

(Please set free variables to zero when finding an \mathbf{x}_p .)

4. For each of the following matrices, write down the rank and the dimensions of $N(R)$, $C(R)$, $N(R^T)$, and $C(R^T)$:

$$\text{a) } R = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \text{b) } R = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{c) } R = \begin{pmatrix} 0 & 1 & -1 & 0 & 17 \\ 0 & 0 & 0 & 1 & 20 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

$$\text{d) } R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{e) } R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

5. Suppose we are trying to solve $A\mathbf{x} = \mathbf{b}$, and find that A has a reduced row-echelon form R . For each of the R 's from problem 4, state which of the following are possible: $A\mathbf{x} = \mathbf{b}$ has no solutions; $A\mathbf{x} = \mathbf{b}$ has a single, unique solution; $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions. (More than one of these may be possible.)

6. Suppose that A is a $p \times n$ matrix and $MA = R$, for an invertible matrix M . True or false:
- The span of the rows of A is a subspace of \mathbb{R}^p .
 - The span of the rows of A is identical to the span of the rows of R .
 - The span of the rows of A has the same dimension as the span of the rows of R .
 - The span of the columns of A is identical to the span of the columns of R .
 - The span of the columns of A has the same dimension as the span of the columns of R .
 - If A is invertible then R is invertible.

Note that the answers to these questions do *not* require R to be the rref of A . They hold for any pair of matrices A, R related by $MA = R$.

7. Let $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$.

- a) What is the rank of A ?

Let B be a 4×6 matrix written in terms of 2×2 blocks as $B = \begin{pmatrix} A & A & A \\ 3A & 3A & 3A \end{pmatrix}$.

- b) What is the rank of B ?

8. Suppose that A is a 3×5 matrix and that B is a 4×3 matrix — so that the product BA is a 4×5 matrix.

- If $\text{rank}(A) = 2$ and $\text{rank}(B) = 3$, what are the minimum and maximum possible ranks of BA ?
- If $\text{rank}(A) = 2$ and $\text{rank}(B) = 2$, what are the minimum and maximum possible ranks of BA ?
- If you know nothing about the ranks of A and B , what are the minimum and maximum possible ranks of BA ?

9. Let $A = \begin{pmatrix} 0 & 2 & 1 & 7 & 1 \\ 0 & -4 & 1 & -5 & -4 \\ 0 & 2 & 7 & 25 & -4 \\ 0 & -2 & -4 & -16 & 0 \end{pmatrix}$.

Not to turn in: find the rref's of A and A^T , and show that they look like

$$R = \text{rref}(A) = \begin{pmatrix} 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad Q = \text{rref}(A^T) = \begin{pmatrix} 1 & 0 & 0 & -8 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

In the case of A^T , you must begin with a permutation because the first pivot is zero; use the permutation that swaps the 1st and 5th rows. (The rest of this problem is to turn in:)

- a) What is the rank r of A ?
- b) True or false: The number of pivots in R must equal the number of pivots in Q .
- c) What are the dimensions of $N(A)$, $C(A)$, $N(A^T)$, and $C(A^T)$?
- (This should not require any computations!)
- d) How many solutions does $A\mathbf{x} = 0$ have: 0, 1, or ∞ ? How many conditions must we impose on entries of \mathbf{b} in order for $A\mathbf{x} = \mathbf{b}$ to have a solution?
- (This should not require any computations!)
- e) Find a basis for the nullspace, writing $N(A) = \langle \mathbf{v}_1, \mathbf{v}_2, \dots \rangle$ for some vectors \mathbf{v}_i .
- f) Find a basis for the column space $C(A) = \langle \mathbf{c}_1, \mathbf{c}_2, \dots \rangle$.

To do this, use the same reasoning as on the last problem of HW 6. Namely, notice that the column space of A is the same as the *row* space of A^T . The span of the rows of A^T is equivalent to the span of the rows of Q (since A^T and Q are related by row operations). Moreover, the nonzero rows of Q are manifestly independent. So: just take the \mathbf{c} 's to be nonzero rows of Q , transposed back into column vectors!

- g) Find a basis for the column space $C(A^T) = \langle \mathbf{d}_1, \mathbf{d}_2, \dots \rangle$.

Remember this is equivalent to the row space of A . So a good basis can just be read off from the nonzero rows of R , transposed back into columns!

- h) Find a basis for the nullspace $N(A^T) = \langle \mathbf{w}_1, \dots \rangle$.
- i) Check that $N(A) \perp C(A^T)$, by showing that every \mathbf{v} is perpendicular to every \mathbf{d} . Similarly, check that $N(A^T) \perp C(A)$ by showing that every \mathbf{w} is perpendicular to every \mathbf{c} .

- j) Suppose we want to solve $A\mathbf{x} = \mathbf{b}$, with $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$. Use what you know about $N(A^T)$ to write down the condition(s) that the entries \mathbf{b} must satisfy in order for $A\mathbf{x} = \mathbf{b}$ to have a solution.

In particular: do *not* do this via an augmented matrix! Use the fact that a vector \mathbf{b} is in $C(A)$ if and only if it's perpendicular to every basis vector of $N(A^T)$.

10. Let $A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 2 & 6 & -4 \\ 1 & 2 & 1 & 0 \end{pmatrix}$.

- a) Find the rref R of A and the rref Q of A^T .
- b) What's the rank of A ?
- c) What are the dimensions of $N(A)$, $C(A)$, $N(A^T)$, and $C(A^T)$?
- d) Find a basis for $N(A)$.
- e) Find a basis for $C(A)$. (Please use the nice basis coming from Q .)
- f) Find a basis for $C(A^T)$. (Please use the nice basis coming from R .)
- g) Find a basis for $N(A^T)$.
- h) Show that $N(A) \perp C(A^T)$ and $N(A^T) \perp C(A)$.
- i) Use (g) to write down the conditions that $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ must satisfy in order for $A\mathbf{x} = \mathbf{b}$ to have a solution.

Final remark: When thinking of A abstractly as a linear map $\mathbb{R}^n \xrightarrow{A} \mathbb{R}^p$ rather than a matrix, there is some different terminology that's common for describing the four subspaces:

$$\begin{array}{llll}
 \text{(right) nullspace,} & N(A) & = & \text{kernel of } A, & \text{ker}(A) \\
 \text{column space,} & C(A) & = & \text{image of } A, & \text{im}(A) \\
 \text{left nullspace,} & N(A^T) & = & \text{cokernel of } A, & \text{coker}(A) \\
 \text{row space,} & C(A^T) & = & \text{coimage of } A, & \text{coim}(A)
 \end{array}$$

The transpose $\mathbb{R}^n \xleftarrow{A^T} \mathbb{R}^p$ is often called the “dual map,” and properties of the dual map (like the cokernel and coimage) get an extra “co-” as a prefix.