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Sequences and Series of Functions   
 

Pointwise and Uniform Convergence 

 

Definition. Let (fn)  be a sequence of functions defined on a subset S of R.  

Then (fn) converges pointwise on S if for each x in S, the sequence of numbers (fn(x)) converges. 

 

If (fn) converges pointwise on S, then we define f: S → R by  ���� = lim	→� �	��� for each x in S and we say that (fn)converges to f pointwise on S.   (Def. 6.1.1, Lebl) 

 

 

Example. Let fn : [0, 1] → R  where fn (x) = x
n
 for each positive integer n. 

For each x in [0, 1), 	lim	→� �	��� = 	lim	→� �	 = 0, and lim	→� �	�1� = lim	→� 1 = 1. 

 

So, (fn) converges pointwise to the function ���� = �0, ��	0 ≤ � < 11, ��	� = 1 � 
 

Note that although each fn is continuous (and differentiable) on [0, 1], the limit function f is 

discontinuous (and not differentiable) at x = 1.                       

 

SEE VIDEO and Interactive Version of this example at 

http://sandsduchon.org/sands/MATH301/Videos/Chapter9/MATH301Chapter9Videos.html 
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Example. For x in [0, 1] and n ≥ 2, let  

 

 

�	��� =
��
�
�� ���,					��	0 ≤ � ≤ 1�	
−�� �� − 2�� ,									��	 1� ≤ � ≤ 2�								

0,												��	 2� < � ≤ 1
� 

 
SEE Interactive Version of this example at 
http://sandsduchon.org/sands/MATH301/Videos/Chapter9/MATH301Chapter9Videos.html 

 

 

Then 	lim	→� �	��� = 0 so the limit function is f(x) = 0. 

 

Note that � �	��� �!" = 1 but � 	lim	→� �	���  �!" = � ���� �!" = 0 

so we have 	
lim	→�# �	��� �!

" ≠# 	lim	→� �	���  �!
"  

 

 

 

Example. For x in [0, 2π] and positive integers n, let  �	��� = $%&	'
√	  .  

Then (fn)  converges to f (x) = 0.         SEE VIDEO and Interactive Version of this example at 

http://sandsduchon.org/sands/MATH301/Videos/Chapter9/MATH301Chapter9Videos.html 
 

However, it turns out that the sequence of derivatives (fn′)   does not converge to f ′ . 

In fact, the sequence (fn′)  does not converge for any x. 

 

 

Example. For x in [0, 1] and positive integers n, let  �	��� = 2� + '	. 

Then (fn)  converges to f (x) = 2x. 

 

It turns out that lim	→� � �	��� �!" =� 	lim	→� �	���  �!" 		and also  

it turns out that the sequence of derivatives (fn′)   converges to f ′ . 
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(Def. 6.1.6, Lebl)  Definition. let (fn) be a sequence of functions defined on a subset S of R. Then (fn) 

converges uniformly on S to a function f defined on S if 

 

for each ε > 0 there exists a number N such that for all x in S and all n > N ,  | fn (x) − f(x) | < ε. 

 

To say that a sequence (fn) converges uniformly on S is to say that there exists a function f to which (fn) 

converges uniformly on S. 

 

 
 

Example. Let fn : [0, 1] → R  where fn (x) = x
n
 for each positive integer n. (same sequence as in earlier 

example) It turns out that although (fn) converges pointwise to f, the sequence (fn) does not converge 

uniformly to f. 
 

Discussion: (fn) converges uniformly on [0,1]  if there is a function f satisfying: 
 

For each ε > 0 there exists a number N such that for all x in [0,1], n > N implies that | fn (x) - f(x) | < ε. 
 

NOT converging uniformly on [0, 1] to f means: 
 

     ∃∃∃∃ εεεε > 0 such that for all N , ∃∃∃∃ x in [0,1] and n > N for which | x
n
 - f(x) | ≥≥≥≥ εεεε. 

 

Proof that the sequence (fn) does not converge uniformly to f:  
 

Pick ε = 1/2  and say that x in [0, 1), so f(x) = 0 and  | x
n
 - f(x) | = x

n
. 

 

We want   x
n
  ≥ 1/2. 

 

So, � ≥ +!�
, = �1/2�!/	 = 2.!/	 

Thus for ε = 1/2 , given any N, for n > N, let � = 2.!/	.  Then   �	 > 02.!/	1	 = 1/2 
SEE VIDEO and Interactive Version of this example at 

http://sandsduchon.org/sands/MATH301/Videos/Chapter9/MATH301Chapter9Videos.html 
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Example.  The earlier example with the sequence (fn) depicted in figure 35.2, the convergence to f is not 

uniform. 

 

Example. For x in [0, 2π] and positive integers n, let  �	��� = $%&	'
√	  .  

 

Then (fn)  converges uniformly to f (x) = 0 on the interval [0, 2π].    
SEE VIDEO of proof at http://sandsduchon.org/sands/MATH301/Videos/Chapter9/MATH301Chapter9Videos.html 
 

 

Cauchy criterion for uniform convergence of sequences of functions  (Prop. 6.1.13, Lebl)   

Theorem. let (fn) be a sequence of functions defined on a subset S of R.  

There exists a function f such that (fn) converges to f uniformly on S  

iff 

the Cauchy criterion is satisfied: 

  for every ε > 0, there exists a number N such that | fn (x) - fm(x) | < ε for all x in S and all m, n > N. 

 

 

*Theorem. Let (fn)  be a sequence of continuous functions defined on a set S and suppose that (fn) 

converges uniformly on S to a function f: S → R. Then f is continuous on S.  (Prop. 6.2.2, Lebl)   

 

 

Example: Let fn : [0, 1] → R  where fn (x) = x
n
 for each positive integer n.  

 

The sequence (fn)  converges to ���� = �0, ��	0 ≤ � < 11, ��	� = 1 �   
 

but the sequence (fn) cannot converge uniformly to f.    Otherwise, by the theorem*, the limit f must be 

continuous on [0, 1], but clearly in this example, f is discontinuous at x = 1. 

 

 

 

Theorem. Let (fn)  be a sequence of continuous functions defined on an interval [a, b] and suppose that 

(fn) converges uniformly on [a, b] to a function f. Then 

 

lim	→�# �	��� �2
3 =# ���� �2

3  

 

Theorem. Suppose that (fn) converges to f on an interval [a, b]. Suppose also that each (fn′) exists and is 

continuous on [a, b], and the sequence (fn′) converges uniformly on [a, b].  

 

Then lim	→� �	4 ��� = �4��� for each x in [a, b]. 
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Definition. If ��	�	5"�  is a sequence of functions defined on a set S,  the series ∑ 	�	�		5"   is said to 

converge pointwise on S  

iff      the sequence of partial sums given by 	7	��� = ∑ 	�8���		85"  converges pointwise on S. 

(A similar definition applies to uniform convergence.) 

 

 

Theorem. Weierstrass M-Test. Suppose that (fn) is a sequence of functions defined on S and (Mn) is a 

sequence of nonnegative numbers such that| fn (x) | ≤  Mn for all x in S and all positive integers n. 

If ∑9	   converges, then  ∑�	 converges uniformly on S.  (Th. 3, Chapter 4, Sec. 13, Zakon, p.240)   

 

Example. Consider the series ∑:$%& '� ;		    for x in R.     

 <:$%& '� ;	< = |$%& '|,�, ≤ !�, = :!�;	   and   ∑:!�;		 converges (geometric series with r =1/2)  

 

so ∑:$%&'� ;		converges by the Weierstrass M-Test, with 9	 = :!�;	  

 

Example. Consider the series ∑ 	�	�		5" 	where 	�	��� = ',	! . 
It turns out that the series converges pointwise on R but does not converge uniformly on R. 

However, the series converges uniformly on any closed interval [-t, t]. 

 

 

Theorem. Let ∑ 	�	�		5"  be a series of functions defined on a set S. Suppose that each fn is continuous on 

S and that the series converges uniformly to a function f on S. Then � = ∑ 	��∞	�=0  is continuous on S. 

 

Theorem. Let ∑ 	�	�		5"  be a series of functions defined on an interval [a, b]. Suppose that each fn is 

continuous on [a, b] and that the series converges uniformly to a function f on [a, b].  

Then � ���� �23 = ∑ � �	��� �23∞	�=0  . 

 

Example. The geometric series ∑ 	�−@�	�		5" = !!	A	B  for t in the interval (-1, 1). 

 

It can be shown by the Weierstrass M-test that the series converges uniformly on any interval [-r, r] 

contained in (-1, 1). According to the theorem above, if x is in (-1, 1), we can integrate term by term and 

get 

#  @1 + @
'
" = C# �−@�	 @'

" = C�−1�	# @	 @'
"

∞	
�=0

∞	
�=0

= C�−1�	 �	A!� + 1
∞	
�=0

 

so, 	
ln�1 + �� = C�−1�	 �	A!� + 1

∞	
�=0

= � − ��2 + �E3 − �G4 +	… 

 

Theorem. Let  ∑ 	�	�		5"  be a series of functions that converges to a function f on an interval [a, b]. 

Suppose that for each n, fn′ exists and is continuous on [a, b] and that the series of derivatives ∑ 	�	′�		5"   

is uniformly convergent on [a, b]. Then �4��� = ∑ 	��′���∞	�=0  for all x in [a, b]. 


