

Sequences and Series of Functions

Pointwise and Uniform Convergence

Definition. Let (f_n) be a sequence of functions defined on a subset S of \mathbf{R} .

Then (f_n) **converges pointwise on S** if for each x in S , the sequence of numbers $(f_n(x))$ converges.

If (f_n) converges pointwise on S , then we define $f: S \rightarrow \mathbf{R}$ by

$f(x) = \lim_{n \rightarrow \infty} f_n(x)$ for each x in S and we say that (f_n) converges to f pointwise on S . **(Def. 6.1.1, Lebl)**

Example. Let $f_n: [0, 1] \rightarrow \mathbf{R}$ where $f_n(x) = x^n$ for each positive integer n .

For each x in $[0, 1]$, $\lim_{n \rightarrow \infty} f_n(x) = \lim_{n \rightarrow \infty} x^n = 0$, and $\lim_{n \rightarrow \infty} f_n(1) = \lim_{n \rightarrow \infty} 1 = 1$.

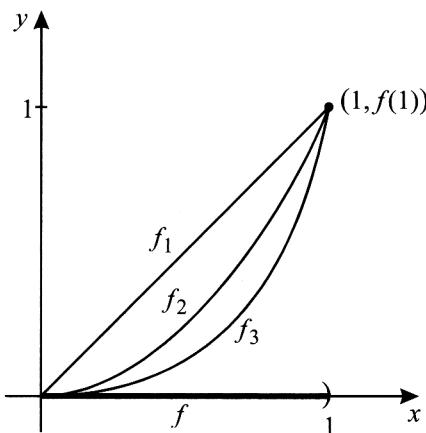


Figure 35.1 $f_n(x) = x^n$ for $x \in [0, 1]$

So, (f_n) converges pointwise to the function $f(x) = \begin{cases} 0, & \text{if } 0 \leq x < 1 \\ 1, & \text{if } x = 1 \end{cases}$

Note that although each f_n is continuous (and differentiable) on $[0, 1]$, the limit function f is discontinuous (and not differentiable) at $x = 1$.

SEE VIDEO and Interactive Version of this example at

<http://sandsduchon.org/sands/MATH301/Videos/Chapter9/MATH301Chapter9Videos.html>

Example. For x in $[0, 1]$ and $n \geq 2$, let

$$f_n(x) = \begin{cases} n^2x, & \text{if } 0 \leq x \leq \frac{1}{n} \\ -n^2\left(x - \frac{2}{n}\right), & \text{if } \frac{1}{n} \leq x \leq \frac{2}{n} \\ 0, & \text{if } \frac{2}{n} < x \leq 1 \end{cases}$$

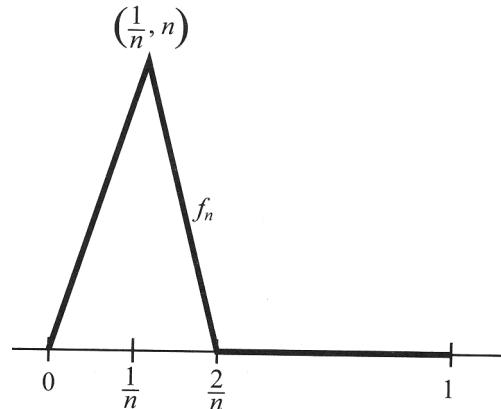


Figure 35.2 Example 35.3

SEE **Interactive Version** of this example at

<http://sandsduchon.org/sands/MATH301/Videos/Chapter9/MATH301Chapter9Videos.html>

Then $\lim_{n \rightarrow \infty} f_n(x) = 0$ so the limit function is $f(x) = 0$.

Note that $\int_0^1 f_n(x) dx = 1$ but $\int_0^1 \lim_{n \rightarrow \infty} f_n(x) dx = \int_0^1 f(x) dx = 0$
so we have

$$\lim_{n \rightarrow \infty} \int_0^1 f_n(x) dx \neq \int_0^1 \lim_{n \rightarrow \infty} f_n(x) dx$$

Example. For x in $[0, 2\pi]$ and positive integers n , let $f_n(x) = \frac{\sin nx}{\sqrt{n}}$.

Then (f_n) converges to $f(x) = 0$. SEE **VIDEO** and **Interactive Version** of this example at
<http://sandsduchon.org/sands/MATH301/Videos/Chapter9/MATH301Chapter9Videos.html>

However, it turns out that the sequence of derivatives (f'_n) does not converge to f' .
In fact, the sequence (f'_n) does not converge for any x .

Example. For x in $[0, 1]$ and positive integers n , let $f_n(x) = 2x + \frac{x}{n}$.

Then (f_n) converges to $f(x) = 2x$.

It turns out that $\lim_{n \rightarrow \infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \rightarrow \infty} f_n(x) dx$ and also
it turns out that the sequence of derivatives (f'_n) converges to f' .

(Def. 6.1.6, LebI) Definition. let (f_n) be a sequence of functions defined on a subset S of \mathbb{R} . Then (f_n) converges uniformly on S to a function f defined on S if

for each $\varepsilon > 0$ there exists a number N such that for all x in S and all $n > N$, $|f_n(x) - f(x)| < \varepsilon$.

To say that a sequence (f_n) converges uniformly on S is to say that there exists a function f to which (f_n) converges uniformly on S .

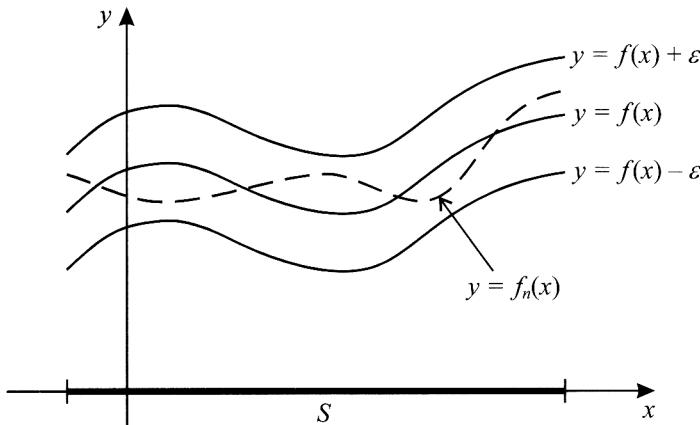


Figure 35.3 Uniform convergence on S

Example. Let $f_n : [0, 1] \rightarrow \mathbb{R}$ where $f_n(x) = x^n$ for each positive integer n . (same sequence as in earlier example) It turns out that although (f_n) converges pointwise to f , the sequence (f_n) does not converge uniformly to f .

Discussion: (f_n) converges uniformly on $[0,1]$ if there is a function f satisfying:

For each $\varepsilon > 0$ there exists a number N such that for all x in $[0,1]$, $n > N$ implies that $|f_n(x) - f(x)| < \varepsilon$.

NOT converging uniformly on $[0, 1]$ to f means:

$\exists \varepsilon > 0$ such that for all N , $\exists x$ in $[0,1]$ and $n > N$ for which $|x^n - f(x)| \geq \varepsilon$.

Proof that the sequence (f_n) does not converge uniformly to f :

Pick $\varepsilon = 1/2$ and say that x in $[0, 1)$, so $f(x) = 0$ and $|x^n - f(x)| = x^n$.

We want $x^n \geq 1/2$.

$$\text{So, } x \geq \sqrt[n]{\frac{1}{2}} = (1/2)^{1/n} = 2^{-1/n}$$

Thus for $\varepsilon = 1/2$, given any N , for $n > N$, let $x = 2^{-1/n}$. Then $x^n > (2^{-1/n})^n = 1/2$

SEE VIDEO and Interactive Version of this example at

<http://sandsduchon.org/sands/MATH301/Videos/Chapter9/MATH301Chapter9Videos.html>

Example. The earlier example with the sequence (f_n) depicted in figure 35.2, the convergence to f is not uniform.

Example. For x in $[0, 2\pi]$ and positive integers n , let $f_n(x) = \frac{\sin nx}{\sqrt{n}}$.

Then (f_n) converges uniformly to $f(x) = 0$ on the interval $[0, 2\pi]$.

SEE VIDEO of proof at <http://sandsduchon.org/sands/MATH301/Videos/Chapter9/MATH301Chapter9Videos.html>

Cauchy criterion for uniform convergence of sequences of functions (Prop. 6.1.13, Lebl)

Theorem. let (f_n) be a sequence of functions defined on a subset S of \mathbf{R} .

There exists a function f such that (f_n) converges to f uniformly on S

iff

the Cauchy criterion is satisfied:

for every $\varepsilon > 0$, there exists a number N such that $|f_n(x) - f_m(x)| < \varepsilon$ for all x in S and all $m, n > N$.

***Theorem.** Let (f_n) be a sequence of continuous functions defined on a set S and suppose that (f_n) converges uniformly on S to a function $f: S \rightarrow \mathbf{R}$. Then f is continuous on S . (Prop. 6.2.2, Lebl)

Example: Let $f_n: [0, 1] \rightarrow \mathbf{R}$ where $f_n(x) = x^n$ for each positive integer n .

The sequence (f_n) converges to $f(x) = \begin{cases} 0, & \text{if } 0 \leq x < 1 \\ 1, & \text{if } x = 1 \end{cases}$

but the sequence (f_n) cannot converge *uniformly* to f . Otherwise, by the theorem*, the limit f must be continuous on $[0, 1]$, but clearly in this example, f is discontinuous at $x = 1$.

Theorem. Let (f_n) be a sequence of continuous functions defined on an interval $[a, b]$ and suppose that (f_n) converges uniformly on $[a, b]$ to a function f . Then

$$\lim_{n \rightarrow \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$$

Theorem. Suppose that (f_n) converges to f on an interval $[a, b]$. Suppose also that each (f_n') exists and is continuous on $[a, b]$, and the sequence (f_n') converges uniformly on $[a, b]$.

Then $\lim_{n \rightarrow \infty} f_n'(x) = f'(x)$ for each x in $[a, b]$.

Definition. If $(f_n)_{n=0}^{\infty}$ is a sequence of functions defined on a set S , the series $\sum_{n=0}^{\infty} f_n$ is said to converge pointwise on S

iff the sequence of partial sums given by $s_n(x) = \sum_{k=0}^n f_k(x)$ converges pointwise on S .
(A similar definition applies to uniform convergence.)

Theorem. Weierstrass M-Test. Suppose that (f_n) is a sequence of functions defined on S and (M_n) is a sequence of nonnegative numbers such that $|f_n(x)| \leq M_n$ for all x in S and all positive integers n .

If $\sum M_n$ converges, then $\sum f_n$ converges uniformly on S . **(Th. 3, Chapter 4, Sec. 13, Zakon, p.240)**

Example. Consider the series $\sum \left(\frac{\sin x}{2}\right)^n$ for x in \mathbf{R} .

$$\left|\left(\frac{\sin x}{2}\right)^n\right| = \frac{|\sin x|^n}{2^n} \leq \frac{1}{2^n} = \left(\frac{1}{2}\right)^n \text{ and } \sum \left(\frac{1}{2}\right)^n \text{ converges (geometric series with } r=1/2)$$

so $\sum \left(\frac{\sin x}{2}\right)^n$ converges by the Weierstrass M-Test, with $M_n = \left(\frac{1}{2}\right)^n$

Example. Consider the series $\sum_{n=0}^{\infty} f_n$ where $f_n(x) = \frac{x^n}{n!}$.

It turns out that the series converges pointwise on \mathbf{R} but does not converge uniformly on \mathbf{R} .
However, the series converges uniformly on any closed interval $[-t, t]$.

Theorem. Let $\sum_{n=0}^{\infty} f_n$ be a series of functions defined on a set S . Suppose that each f_n is continuous on S and that the series converges uniformly to a function f on S . Then $f = \sum_{n=0}^{\infty} f_n$ is continuous on S .

Theorem. Let $\sum_{n=0}^{\infty} f_n$ be a series of functions defined on an interval $[a, b]$. Suppose that each f_n is continuous on $[a, b]$ and that the series converges uniformly to a function f on $[a, b]$.

Then $\int_a^b f(x)dx = \sum_{n=0}^{\infty} \int_a^b f_n(x)dx$.

Example. The geometric series $\sum_{n=0}^{\infty} (-t)^n = \frac{1}{1+t}$ for t in the interval $(-1, 1)$.

It can be shown by the Weierstrass M-test that the series converges uniformly on any interval $[-r, r]$ contained in $(-1, 1)$. According to the theorem above, if x is in $(-1, 1)$, we can integrate term by term and get

$$\int_0^x \frac{dt}{1+t} = \sum_{n=0}^{\infty} \int_0^x (-t)^n dt = \sum_{n=0}^{\infty} (-1)^n \int_0^x t^n dt = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

so,

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

Theorem. Let $\sum_{n=0}^{\infty} f_n$ be a series of functions that converges to a function f on an interval $[a, b]$. Suppose that for each n , f_n' exists and is continuous on $[a, b]$ and that the series of derivatives $\sum_{n=0}^{\infty} f_n'$ is uniformly convergent on $[a, b]$. Then $f'(x) = \sum_{n=0}^{\infty} f_n'(x)$ for all x in $[a, b]$.