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Infinite Series  (Week 6) 
 

Convergence of Infinite Series 

 

Summation notation 

∑ �� =�
��� 	�� +	��
� +	…+	��                               Def. 2.5.1 Lebl, p. 72 

 

Let (sn) be the sequence of partial sums defined by  
� = ∑ �� =�
��� 	�� +	�� +	…+	�� . 

 

If (sn) converges to a real number s, we say that the infinite series ∑ ���
���  is convergent and we write  

∑ ���
��� = 
. 

 

s is called the sum of the series. A series that is not convergent is called divergent. If lim sn = +∞ we say 

that the series diverges to +∞∞∞∞ and we write  ∑ ���
��� = +∞ . 

 

 

Example:  Consider the infinite series ∑ �
�(�
�)

�
���    . 

 

Partial sum:  
� = �
�∙�+

�
�∙�+⋯+ �

�(�
�) 

 

By induction, it can be shown that   
�
�∙�+

�
�∙�+⋯+ �

�(�
�) =
�

�
�  for every n ∈ N. 

Therefore, lim 
� = lim �
�
� = 1. 

So, the infinite series converges to 1, and we write ∑ �
�(�
�)

�
��� = 1. 

 

An alternative approach: 

 

Thinking of partial fractions from calculus, note that 
�

�(�
�) =
�
� −

�
�
�. 

 

So, ∑ �
�(�
�)

�
��� = ∑ �1� −

1
�+1�

�
���   

 

and 
� = ���−
�
� + �12 −

1
3 + �13 −

1
4 + ⋯+ �1� −

1
�+1   (called a telescoping sum) 

 

             = 1 − �
�
�  

 

Therefore, lim 
� = lim�1 − �
�
� = 1, just as with our other approach. 

 

 

 

Example: The harmonic series 1 + �
� +

�
� +

�
$ +⋯ =	∑ 	��

����   diverges to +∞.  

       (Shown in Sequence notes, week 4, page 7) 
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Theorem. Suppose that ∑�� = 
  and ∑%� = &.                  (Prop. 2.5.10, Lebl, page 75) 

 

Then  ∑(�� + %�) = 
 + &, and ∑('��) = '
	for every k ∈R. 

 

 

Theorem. If  ∑��	  is a convergent series, then lim an = 0.             (Prop. 2.5.8, Lebl) 
 

Proof:  

If  ∑��	  converges, then the sequence of partial sums (sn)  must have a finite limit. Call it s. 

 

Note that sn - sn - 1 = an. 

 

So, lim (sn - sn - 1) = lim an. 

  lim sn - lim sn - 1 = lim an. 

                        s - s = lim an. 

                             0 = lim an. 

 

I have specifically stated the theorem's related result which is familiar from calculus: 

Corollary (nth Term Test): If lim an ≠  0, then ∑��		diverges. 

 

Note that the corollary is the contrapositive of the theorem and thus follows directly from the theorem. 

 

Example: ∑ �
�(�
$

�
���  diverges, because lim �

�(�
$ =
�
�( ≠	0. 

 

 

Theorem. (Cauchy Criterion for Series)                 (Prop. 2.5.7, Lebl) 

The infinite series ∑��	converges  

     iff  

for each ε > 0 there exists a number N such that, if n ≥  m > N, then|	�� +	��
� +	…+	�� | < ε. 

 

Proof: 

Suppose that ∑��	converges. Then the sequence (sn) of partial sums converges, and so (sn) must be a 

Cauchy sequence. 

 

Given ε > 0, there exists N such that m, n > N implies that | sn - sm | < ε. 

So if n ≥ m > N + 1, then m - 1 > N, so that | sn - sm - 1 | < ε. 

 

But  |sn - sm - 1| = |(�� +	�� +	…+	��) − (�� +	�� +	…+	��+�)| = 	 |	�� +	��
� +	…+	��| 
                         so |	�� +	��
� +	…+	�� | < ε as desired. 

 

Conversely, suppose that for each ε > 0 there exists a number N such that 

            n ≥  m > N implies that|	�� +	��
� +	…+	�� | < ε. 

 

Then for n > m > N, we have m + 1 > N so that |sn - sm | = |	��
� +	��
� +	…+	�� | < ε. 

 

Therefore, the sequence of partial sums (sn) must be a Cauchy sequence and therefore converges. 

Since the sequence of partial sums converges, ∑��	converges.  
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Geometric Series   ∑ ,��
��( = 1 + , +	,2 + ,3 + ⋯ 

 

Partial sum: 
� = 1 + , +	,� +⋯+ ,�  

It can be proven by induction that 

                               1 + , +	,� +⋯+ ,� = �+-./0

�+-  for every n ∈ N, r ≠ 1. 

 

Another result from our week 3 study of sequences showed that  lim�→� 2� = 0 iff  |x| < 1. 

So, lim�→� ,� = 0 provided |r| < 1. 

 

If |r| < 1, lim 
� = lim �+-./0

�+- = �+345	-./0

�+- = �+	-	345	 -.
�+- = �+-(()

�+- = �
�+- 

 

If r = 1, then ∑ 1��
��( = 1 + 1 + 	1 + ⋯, which diverges to +∞.  

 

If r = -1, then ∑ (−1)��
��( = 1 − 1 + 1 − 	1 + 1 − ⋯. 

     Note that if n is even, 
� = 1 but if n is odd, 
� = 0. Therefore the sequence (sn) of partial sums does 

not converge, and so ∑ (−1)����(  diverges. Alternatively, lim (−1)
n
 does not exist,  so the series diverges. 

 

If |r| > 1, lim an = lim r
n
 ≠  0,  so the geometric series  diverges. 

 

Summary:  

The geometric series ∑ ,��
��( = 1 + , +	,2 + ,3 + ⋯ =	 1

1−,  only if |r| < 1. 

For |r| ≥ 1, the series diverges. 

 

 

Example:     p-Series ∑ �
�6	.   The p-series converges if p > 1 and diverges if p ≤ 1.  (Prop. 2.5.15, Lebl) 

 

 

Convergence Tests 
 

Theorem (Comparison Test)                                                      (Def. 2.5.14, Lebl) 

Let  ∑��	 and ∑%�	 be infinite series of nonnegative terms. Then 

 

(a) If  ∑��	converges and 0 ≤ bn ≤ an for all n, then ∑%�	converges. 

 

(b) If  ∑��	 = +∞ and 0 ≤ an ≤ bn for all n, then ∑%�	 = +∞. 

 

Examples:  

          ∑ �
(�
�)7 .           Since    0 < �

(�
�)7 <
�
�7 , and ∑ �

�7 is a convergent p-series with p = 2, the given 

series converges by the comparison test. 

 

             ∑ �
�+√�  .          Since   0 < �

� < �
�+√�    (for n > 2) and  the harmonic series ∑ �

�  diverges,  the given 

series diverges by the comparison test. 
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Definition. If  ∑|��|	converges, then the series  ∑��	converges is said to converge absolutely (or to be 

absolutely convergent). If ∑��	converges but ∑|��|	 diverges, then ∑��	 is said to converge 

conditionally (or be conditionally convergent).                                                   (Def. 2.5.12, Lebl) 

 

 

Theorem: If a series converges absolutely, then it converges.                 (Prop. 2.5.13, Lebl) 

 
 

Example: ∑ (+�).
�7  converges absolutely.   (Series of absolute values is a p-series with p  = 2). 

 

 

Theorem (Ratio Test) Let  ∑��	 be an infinite series of nonzero terms.           (Prop. 2.5.17, Lebl)  

 

Suppose lim :;./0
;.

: exists and is equal to L. 

     (a) If < < 1, then the series converges absolutely. 

     (b) If < > 1, the series diverges. 

     (c) Otherwise, the test gives no information about convergence or divergence. 

 

 

Theorem (Root Test) Given a series  ∑��	, let ? = lim sup|��|�/�.            (Prop. 2.6.1, Lebl) 

      (a) If α < 1, then the series converges absolutely. 

      (b) If α > 1, the series diverges. 

       (c) Otherwise α = 1, and the test gives no information about convergence or divergence. 

 

When applying the root test, it can be handy to recall that lim ��/� = 1.             

 

 

Examples  

 

∑ �
�.   converges (can apply the ratio test or the root test).  

 

             lim :;./0
;.

: = lim (�
�)
�./0 ∙ �

.

� = lim �
� �1 + �

� = �
� < 1.      

 

             lim sup|��|�/� = lim sup �0/.

(�.)0/. = lim sup �0/.

� = �
� lim ��/� = �

� < 1 

 

 

 
�
� +

�
�7 +

�
�D +

�
�E +

�
�F +

�
�G +⋯ converges (compare to the convergent geometric series with r = 1/2.) 

 

 

∑ �.
�!    converges  (can apply the ratio test).  

 


