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Differentiation                                                                                                             (notes by S. Sands) 
 

The Derivative 

(Def. 4.1.1, Lebl, p. 131) 

Definition: Let f: I → R be a real-valued function defined on an interval I containing the point c. 

(We allow the possibility that c is an endpoint of the interval.) We say that f is differentiable at 

c (or has a derivative at c) if the limit 

lim�→�
��	
 − ���


	 − �  

 

exists and is finite. We call the limit the derivative of f at c, denoted f ′(c), so 
 

�′��
 = ��	
 − ���

	 − �  

whenever the limit exists and is finite.  

If the function f  is differentiable at each point of the set S ⊆ I, then f is said to be differentiable 

on S, and the function f ′: S → R is called the derivative of f on S. 

 

Examples: For relatively simple functions, such as low degree polynomials, some powers of x, 

and simple piecewise-defined functions, it is relatively easy to find the derivative using the limit 

definition. 

Example: Let ��	
 = �	 sin �
� , 	 ≠ 0
0, 	 = 0�.      f is not differentiable at x = 0 because  the limit  

 

lim�→� ���
����

��� = lim�→�

� ����
���� = lim�→� sin �

�  does not exist. 

 

Geometrically, the difference quotient  
���
����


��� 		represents the slope of the secant line 

through the points (c, f(c)) and (x, f(x)).  As x approaches c, this ratio approaches the slope of 

the tangent line at c. 
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Sequential Condition for Derivatives: Let I be an interval containing the point c and f: I → R. 

Then  f is differentiable at c   

 iff  for every sequence (xn)  in I that converges to c with xn ≠  c for all n, the sequence  

 ���!
����

�!�� " converges.  

Furthermore, if f is differentiable at c, then the sequence of quotients converges to f ′(c). 

 

Example: Using the sequential condition to show that a function is not differentiable at a point: 

 

Let  f(x) = |x| and let xn = (-1)
n
/n for positive integers n. Then the sequence (xn) converges to 0.  

The corresponding sequence of quotients has terms 
���!
����


�!�� = #�−1
n
! #��

�−1
n
! ��  .  

For n even, the quotient is 1 but for n odd, the quotient is −1, so the sequence of quotients 

oscillates between  −1 and 1, and so does not converge. 

 
REMARK:  f(x) = |x| is continuous on R but not differentiable at 0. 
 

(Prop. 4.1.4, Lebl) 

Theorem. If f: I → R is differentiable at a point c in I, then f is continuous at c. 

 

Differentiation Rules   (Prop. 4.1.5, 4.16, 4.17, Lebl) 

Theorem. Suppose that f: I → R and f: I → R are differentiable at c in I. Then 

 

(a) if k ∈ R, then the function kf is differentiable at c and (kf)′(c) = k f ′(c). 
 

(b) Sum Rule:  The function f + g is differentiable at c and (f + g) ′ (c) = f ′(c) + g ′(c). 
 

(c) Product Rule:  The function f g is differentiable at c and (f g) ′ (c) = f (c) g ′(c) + g(c) f ′(c). 
 

(d) Quotient Rule:  If g(x) ≠ 0, then the function f /g is differentiable at c and 

%�&'
( ��
 = &��
�(��
 − ���
&(��


[&��
]+  
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Power Rules. (Integer exponents) 

For any positive integer n, if f(x) = x
n
 for all x in R, then f ′(x) = nx

n - 1 
for all x in R. 

 

For any negative integer n,  if f(x) = x
n
 for all x ≠ 0, then f ′(x) = nx

n - 1 
for all x ≠ 0. 

 

(Prop. 4.1.8, Lebl, p. 132) 

Theorem. Chain Rule.  

Let I and J be intervals in R, let f: I → R  and g: I → R, where f(I) ⊆ J, and let c in I.  

 

If f is differentiable at c and g is differentiable at f(c),  

then the composite function g o f is differentiable at c and  (g o f) ′(c) = g ′(f(c)) f ′(c). 

 

Examples:  

 

(1) Differentiate h(x) = sin (1/x) for x ≠ 0.   

 

h(x) = sin (1/x) = (g o f)(x) where f(x) = 1/x = x
−1

  and g(x) = sin x.   

 

Since f ′(x) = −x
−2

 = −1/x
2
 (power rule) and g ′(x) = cos x (assumed),   

 

applying the chain rule, h′(x) = g ′(f(x)) f ′(x)  = [cos (1/x)] (−1/x
2
) =  (−1/x

2
) cos (1/x).    

 

(2) Differentiate r(x) = x sin (1/x) for x ≠ 0.   

 

Note that r(x) = x h(x). Applying the product rule,  

r ′(x) = x h ′(x)  + 1 h(x) = x (−1/x
2
) cos (1/x) +  sin (1/x) =  (−1/x) cos (1/x) +  sin (1/x)  . 

 

(3) There is a continuous function on R that has a derivative at all but one real number. 

 

f(x) = |x| qualifies (see earlier example on previous page). 

 

Another example:  
 

Let ,�	
 = �	 sin �
� , 	 ≠ 0
0, 	 = 0�  This is an extension of the function r(x) in part (2).  

 

The derivative has been found for all x ≠ 0.   

When x = 0, the derivative does not exist. (See the second example on the first page.) 
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 Calculus Theorems 
 

(Th. 4.2.2, Lebl)  Theorem: If f is differentiable on an open interval (a, b) and if f assumes its 

maximum or minimum at a point c ∈ (a, b), then f ′(c) = 0. 
 

Remark:  Recall that in calculus when f continuous on closed interval [a, b], to find the 

maximum and minimum of the function, we look at the y -values corresponding to:  

(1) points c where f ′(c) = 0 ,  (2) endpoints a and b, and (3) points c where f ′(c)  does not exist. 
 

(Th. 4.2.3, Lebl)   

Rolle's Theorem. Let f be a function which is continuous on [a, b]  and differentiable on (a, b), 

and suppose that f(a) = f(b). Then there exists at least one point c ∈ (a, b) such that f ′(c) = 0. 

 
The Mean Value Theorem is an  extension of Rolle's Theorem where the endpoints do not have 

the same y-values. 
 

(Th. 4.2.4, Lebl)   

Mean Value Theorem.  

Let f be a function which is continuous on [a, b]  and differentiable on (a, b). Then there exists 

at least one point c ∈ (a, b) such that  

�′��
 = ��-
 − ��.

- − .  
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Examples: 

• The Mean Value Theorem can be used to prove Bernoulli's inequality: 

                      (1 + x)
n
 ≥ 1  + nx, for x > -1, and all n in N. 

 

• The Mean Value Theorem can be used to estimate the value of a function near a point. 

For instance,  √40 can be approximated using the Mean Value Theorem and the knowledge 

that 40 is relatively close to 36, a perfect square. 

 

Additional familiar calculus concepts can be established. 

 

(Prop. 4.2.5, Lebl)   

Theorem. Let f be a function which is continuous on [a, b] and differentiable on (a, b).  

If f ′(x) = 0 for all x ∈ (a, b), then f is constant on (a, b). 

 

Corollary. Let f and g be continuous on [a, b]  and differentiable on (a, b).  

Suppose that f ′(x) = g ′(x) for all x ∈ (a, b).   

Then there exists a constant C such that f = g + C on [a, b]. 

 

(Prop. 4.2.6, Lebl)   

Theorem. Let f be differentiable on an interval I. Then 

(a) if f ′(x) > 0 for all x ∈ I, then f is strictly increasing on I, and 

(b) if f ′(x) < 0 for all x ∈ I, then f is strictly decreasing on I. 

 

(Darboux Th. 4.2.9, Lebl)   

Intermediate Value Theorem for Derivatives.  

Let f be differentiable on [a, b] and suppose that k is a number between f ′(a)  and f ′(b). Then 

there exists a point c ∈ (a, b) such that f ′(c) = k.  

 

(Th. 4.4.2, Lebl)   

Inverse Function Theorem. Suppose f is differentiable on an interval I  and f ′(x) ≠ 0 for all x ∈ I. 

Then f is injective, f
 −1

 is differentiable on f(I), and 

 

																																													����
(�1
 = �
�	2��
           where y = f(x). 

 

                         or, equivalently, �(�	
 = �
��3�
2�4
   where y = f(x). 

 

                         or, equivalently, �(�	
 = �
52�4
   where y = f(x) and g = f

−1
. 
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(Cor. 4.4.3, Lebl)   

 

Power Rule (Power of form 1/n) 

 

For any positive integer n, if f(x) = x
1/n

  for all x > 0, then f ′(x) = (1/n) x
1/n − 1 

for x > 0. 

 

Proof: 

Since f is injective, the inverse function exists.  

 

To apply the Inverse Function Theorem, we need to know f 
−1

, the inverse function. 

 

    y = f(x) = x
1/n

    Now raise both sides to the nth power. 

 

so y
n
 = x, and so f 

−1
 (y) = y

n
 . 

 

g(y) = y
n
 is the inverse function. 

 

g′ (y) = n y
n − 1

  by the earlier power rule for positive integer powers. 

 

Applying the Inverse Function Theorem, 

 

�(�	
 = �
52�4
 = �

64!3� = �
6 	1�67�  where y = f(x) = x

1/n
   

 

Substituting for y,      
�
6 	1�67� = �

6 	8	�/6:�67� = �
6 	�6 �!"7�/6 = �

6 	��7�/6 = �
6 	

�
!	�	� 

 

So, f ′(x) = (1/n) x
1/n − 1 

 

 

 

Power Rule (Rational Exponents) 

For any nonzero integers m and n,  if f(x) = x
m/n

  for all x > 0, then f ′(x) = (m/n) x
m/n - 1 

for x > 0. 

 

To establish this, use the fact that f(x) = x
m/n

  = (x
1/n

 )
m

 and apply the Chain Rule and the 

previous example. 
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L'Hospital's Rule 

 

Cauchy Mean Value Theorem: Let f and g be functions that are continuous on [a, b] and 

differentiable (a, b). Then there exists at least one point c ∈ (a, b) such that 

         [f (b) − f (a)] g′(c) =  [g(b) −  g(a)] f ′(c). 

 

Indeterminate forms: 0/0, ∞/∞ , 0 · ∞ , 1
∞

, ∞
0
, 0

0
, ∞ − ∞. 

 

(Th. 2.4.1, TRENCH)  L'Hospital's Rule for the indeterminate form 0/0.  

Let f and g be functions that are continuous on [a, b] and differentiable (a, b).  

Suppose that c ∈ [a, b] and that f (c) = g (c) = 0. Suppose also that g′(c) ≠ 0 for x ∈ U, where U is 

the intersection of (a, b) and some deleted neighborhood of c. 
 

         If  lim�→� �(��

5(��
 = ;, with L ∈  R, then lim�→� ���


5��
 = ; . 

 

Examples (indeterminate form 0/0): 

 lim�→�	 ��� �
� = 1,    lim�→� +�<	�	=�	7	�

�	�	� = 1,   lim�→� ��>?� �
�< = �

+,   lim�→� @<���
� = 2 

 

Limits at Infinity 
 

Definition. Let f: (b, ∞)  → R where b ∈ R. We say that L ∈ R is the limit of f as x → ∞ , written  
 lim�→∞ ��	
 = ; 

provided that  

for each ε > 0 there exists a real number N > b such that x > N implies that  | f(x) - L | < ε . 

 
 

Definition. Let f: (b, ∞)  → R where b ∈ R. We say that f tends to ∞ as x → ∞ , written  
 lim�→∞ ��	
 = ∞ 

provided that  

for each α ∈ R there exists a real number N > b such that x > N  implies that  f(x) > α. 

 

(Th. 2.4.1, TRENCH)  L'Hospital's Rule for the indeterminate form ∞∞∞∞/∞∞∞∞.  

Let f and g be differentiable on (b, ∞). 

Suppose that lim�→B ��	
 = lim�→B &�	
 = ∞, and that g′(x) ≠ 0 for x ∈ (b, ∞). 

 

         If  lim�→B �(��

5(��
 = ;, with L ∈  R, then lim�→B ���


5��
 = ; . 

 

Examples (indeterminate forms ∞/∞ , 0 · ∞ , 0
0
) 

      lim�→∞	 D� �
� = 0,         lim�→�7 	�	
�− ln 	
 = 0,         lim�→�7 	� = 1 


