Differentiation (notes by S. Sands)

The Derivative

(Def. 4.1.1, Lebl, p. 131)

Definition: Let f: | — R be a real-valued function defined on an interval / containing the point c.
(We allow the possibility that c is an endpoint of the interval.) We say that f is differentiable at
¢ (or has a derivative at ¢) if the limit

i L8 = f(©)
im——————

bandd X—C

exists and is finite. We call the limit the derivative of f at ¢, denoted f’(c), so

, fx) —f(c)
flle)=——
xX—c
whenever the limit exists and is finite.
If the function f is differentiable at each point of the set S — /, then f is said to be differentiable

on S, and the function f”: S — R is called the derivative of fon S.

Examples: For relatively simple functions, such as low degree polynomials, some powers of x,
and simple piecewise-defined functions, it is relatively easy to find the derivative using the limit
definition.

.1
Example: Let f(x) = {x sz, x # 0

. fis not differentiable at x = 0 because the limit
0, x=0

1
. (x)-f(0 . x sin——0 . .1 .
lim,_,, DO lim,_,, Tx = lim,_,, sin - does not exist.

x—

represents the slope of the secant line

Geometrically, the difference quotient —f(x;:f(C)

through the points (c, f(c)) and (x, f(x)). As x approaches c, this ratio approaches the slope of
the tangent line at c.

Figure 25.1 f(x)=x"withc=1/2and x=2
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Sequential Condition for Derivatives: Let / be an interval containing the point cand f: / — R.

Then fis differentiable at ¢

iff for every sequence (x,) in / that converges to c with x, # c¢ for all n, the sequence

(f(xn)—f(C)
Xn—C

Furthermore, if f is differentiable at ¢, then the sequence of quotients converges to f’(c).

) converges.

Example: Using the sequential condition to show that a function is not differentiable at a point:

Let f(x) = |x] and let x,, = (-1)"/n for positive integers n. Then the sequence (x,) converges to 0.

(G
xn)—f(c -0
The corresponding sequence of quotients has terms A ;) }Cc( ) = |(_711)n .
n= 0
n

For n even, the quotient is 1 but for n odd, the quotient is —1, so the sequence of quotients
oscillates between —1 and 1, and so does not converge.

ya
(s £5) .
Sx) = |x|
(%, f(x,))
(x5, f(x3))
(x5, f(x5)) (x, f(x))
;Cl X3 ;5 ;4 ;Cz .1 x>

Figure 25.2 f(x)=|x|and x,= (-1)"/n
REMARK: f(x) = | x| is continuous on R but not differentiable at 0.

(Prop. 4.1.4, Lebl)
Theorem. If f: | — R is differentiable at a point cin /, then f is continuous at c.

Differentiation Rules (Prop. 4.1.5, 4.16, 4.17, Lebl)
Theorem. Suppose that f: | — R and f: | — R are differentiable at cin /. Then

(a) if k € R, then the function kf is differentiable at c and (kf)’(c) = k f’(c).
(b) Sum Rule: The function f + g is differentiable at cand (f+ g) " (c) =f’(c) + g "(c).
(c) Product Rule: The function f g is differentiable at cand (fg) " (¢) = f (c) g (c) + g(c) f’(c).

(d) Quotient Rule: If g(x) # 0, then the function f /g is differentiable at ¢ and
({)' ©) = g()f'(c) = f(c)g'(c)
g [9(c)]?
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Power Rules. (Integer exponents)
For any positive integer n, if f(x) = x" for all x in R, then f’(x) = nx" ' for all x in R.

For any negative integer n, if f(x) = x" for all x £ 0, then f’(x) = nx" " *for all x # 0.
(Prop. 4.1.8, Lebl, p. 132)
Theorem. Chain Rule.

Let /and Jbe intervalsinR, letf:/—> R and g:/ — R, where f{/) = J,and let cin /.

If fis differentiable at c and g is differentiable at f(c),
then the composite function g o fis differentiable at cand (g o f) “(c) = g "(f(c)) f"(c).

Examples:

(1) Differentiate h(x) = sin (1/x) for x #0.

h(x) = sin (1/x) = (g o f)(x) where f(x) = 1/x =x* and g(x) = sin x.

Since f'(x) = —x > = -1/x* (power rule) and g ’(x) = cos x (assumed),

applying the chain rule, h’(x) = g "(f(x)) f (x) = [cos (1/x)] (-1/x*) = (—=1/x°) cos (1/x).
(2) Differentiate r(x) = x sin (1/x) for x #0.

Note that r(x) = x h(x). Applying the product rule,
r’(x) =xh’(x) +1h(x)=x(=1/x*) cos (1/x) + sin (1/x) = (=1/x) cos (1/x) + sin (1/x) .

(3) There is a continuous function on R that has a derivative at all but one real number.
f(x) = | x| qualifies (see earlier example on previous page).
Another example:

xsin%, x#0
0, x=0

This is an extension of the function r(x) in part (2).

Letr(x) = {

The derivative has been found for all x # 0.
When x = 0, the derivative does not exist. (See the second example on the first page.)
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Calculus Theorems

(Th. 4.2.2, Lebl) Theorem: If fis differentiable on an open interval (a, b) and if f assumes its
maximum or minimum at a point ¢ € (a, b), then f’(c) = 0.

Remark: Recall that in calculus when f continuous on closed interval [a, b], to find the
maximum and minimum of the function, we look at the y -values corresponding to:

(1) points c where f’(c) =0, (2) endpoints a and b, and (3) points ¢ where f’(c) does not exist.

(Th. 4.2.3, Lebl)
Rolle's Theorem. Let f be a function which is continuous on [a, b] and differentiable on (a, b),
and suppose that f(a) = f(b). Then there exists at least one point ¢ € (a, b) such that f’(c) = 0.

pACIL

f@=£(b)

Figure 26.1 Rolle's theorem

The Mean Value Theorem is an extension of Rolle's Theorem where the endpoints do not have
the same y-values.

(Th. 4.2.4, Lebl)
Mean Value Theorem.
Let f be a function which is continuous on [a, b] and differentiable on (a, b). Then there exists
at least one point c € (a, b) such that
)~ f(@)
o) =——

y=r

= g(x)

SOT@ (o pia)
b-a

[~
k- -

Q_.—_
[ ) Epp—
=V

Figure 26.2 The mean value theorem
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Examples:
® The Mean Value Theorem can be used to prove Bernoulli's inequality:
(1+x)">1 +nx, forx>-1,and all nin N.

® The Mean Value Theorem can be used to estimate the value of a function near a point.

For instance, V40 can be approximated using the Mean Value Theorem and the knowledge
that 40 is relatively close to 36, a perfect square.

Additional familiar calculus concepts can be established.

(Prop. 4.2.5, Lebl)
Theorem. Let f be a function which is continuous on [a, b] and differentiable on (a, b).
If f’(x) = 0 for all x € (a, b), then fis constant on (a, b).

Corollary. Let fand g be continuous on [a, b] and differentiable on (a, b).
Suppose that f’(x) = g ’(x) for all x € (a, b).
Then there exists a constant C such that f=g + Con [ag, b].

(Prop. 4.2.6, Lebl)

Theorem. Let f be differentiable on an interval /. Then

(a) if f’(x) > O for all x € I, then fis strictly increasing on /, and
(b) if f’(x) < 0 for all x € I, then fis strictly decreasing on /.

(Darboux Th. 4.2.9, Lebl)

Intermediate Value Theorem for Derivatives.

Let f be differentiable on [a, b] and suppose that k is a number between f’(a) and f’(b). Then
there exists a point ¢ € (a, b) such that f’(c) = k.

(Th. 4.4.2, Lebl)
Inverse Function Theorem. Suppose fis differentiable on an interval / and f’(x) # 0 forall x € .
Then fis injective, f * is differentiable on f{/), and

—1\7/ _ 1 _
(f ) (y) = _f’(x) where y = f(x).

or, equivalently, f'(x) = where y = f(x).

_r
D'

1
or, equivalently, f'(x) = 700 where y =f(x) and g = f .
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(Cor. 4.4.3, Lebl)
Power Rule (Power of form 1/n)
For any positive integer n, if f(x) = x*/" for all x>0, then f’(x) = (1/n) x*" ~*for x > 0.

Proof:
Since fis injective, the inverse function exists.

To apply the Inverse Function Theorem, we need to knowf_l, the inverse function.
y =f(x) =x"  Now raise both sides to the nth power.

soy'=x,andsof t(y)=y".

g(y) =y" is the inverse function.

g (y)=ny" ' by the earlier power rule for positive integer powers.

Applying the Inverse Function Theorem,

1 1 1 _ _n
! - n—1 . y
g'y) ny n

+1 \where y = f{x) = x*/"

flx) =

1 _ 1 -n+1 1 —n(H+1/n 1 _ 1 1_4
Substituting fory, —y ntl = 2 (xl/n) =—-X (n) m _ Zx~H/n = 24y
n n n n n

So, f7(x) = (1/n) x*/"*

Power Rule (Rational Exponents)
For any nonzero integers m and n, if f(x) = x™" for all x >0, then f’(x) = (m/n) xX™" *for x > 0.

To establish this, use the fact that f(x) = x™" = (x/™ )™ and apply the Chain Rule and the
previous example.
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L'Hospital's Rule

Cauchy Mean Value Theorem: Let f and g be functions that are continuous on [a, b] and
differentiable (a, b). Then there exists at least one point c € (a, b) such that

[f(b) —f(a)l g’(c) = [g(b) — g(a)l f'(c).
Indeterminate forms: 0/0, oo/co, 0 - 00, 17, °, 0°, 00 — o0,

(Th. 2.4.1, TRENCH) L'Hospital's Rule for the indeterminate form 0/0.

Let f and g be functions that are continuous on [a, b] and differentiable (a, b).

Suppose that c € [a, b] and that f(c) = g (c) = 0. Suppose also that g’(c) # 0 for x € U, where U is
the intersection of (a, b) and some deleted neighborhood of c.

: frx) _ fl) _
If lim,_,.——= e = L, withLe R, thenlim,_,—= o
Examples (indeterminate form 0/0):
sinx . 2x%2 -3x+1 1-cosx 1 . e?*-1
lim,,o—=1, lim,_,, — = 1, lim,_, =2 lim,_,, — = 2

Limits at Infinity
Definition. Let f: (b, ©) — R where b € R. We say that L € R is the limit of fas x — oo, written

limf(x) =1L
X— o0
provided that
for each € > 0 there exists a real number N > b such that x > N implies that | f(x)-L | <€.

Definition. Let f: (b, ) — R where b € R. We say that f tends to « as x — <, written
lim f(x) =
X—00

provided that
for each o € R there exists a real number N > b such that x> N implies that f(x) > a.

(Th. 2.4.1, TRENCH) L'Hospital's Rule for the indeterminate form co/co,
Let f and g be differentiable on (b, ).
Suppose that lim,_,, f(x) = lim,_, g(x) = oo, and that g’(x) # 0 for x € (b, ).

frix) fx) _
If lim, o ——= e = L,withLe R, thenlim,_,—= o
Examples (indeterminate forms co/co, 0 - o0, 0°)
. 1 . .
lim,_, ﬂ =0, lim,,o+ (x)(—Inx) =0, lim,_ o, x* =1
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