

Name:

1. Let S be a nonempty set, G is a group (written additively), and $M(S, G)$ the set of all functions $f : S \rightarrow G$. Define addition in $M(S, G)$ as follows: $(f + g) : S \rightarrow G$ is given by $(f + g)(s) = f(s) + g(s) \in G$. Prove that $M(S, G)$ is a group, and it is an abelian if G is.
2. Write out a multiplication table for the group D_4^* , **the group of symmetries of the square**.
3. Suppose G is a group. Prove that the following conditions are equivalent:
 - (a) G is abelian.
 - (b) $(ab)^2 = a^2b^2$ for all $a, b \in G$.
 - (c) $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.

[Hint: Prove $(a) \Leftrightarrow (b)$ and $(a) \Leftrightarrow (c)$]

4. (a) Show that the relation given by $a \sim b \Leftrightarrow a - b \in \mathbb{Z}$ is an equivalence relation on the additive group \mathbb{Q} . [Hint: Show that \sim is reflexive, symmetric, and transitive].
(b) Show that the relation in (a) is a congruence relation on the additive group \mathbb{Q} . [Hint: Show that if $a_1 \sim a_2$ and $b_1 \sim b_2$ then $(a_1 + b_1) \sim (a_2 + b_2)$].
5. Write out an addition table for $\mathbf{Z}_2 \oplus \mathbf{Z}_2 \cdot \mathbf{Z}_2 \oplus \mathbf{Z}_2$ is called the **Klein four group**.
6. Let S be the set of all real numbers except -1 . Define $*$ on S by $a * b = a + b + ab$.
 - (a) Show that S is a group under the given binary operation $*$.
 - (b) Find the solution of the equation $2 * x * 3 = 7$ in S .