
1

Project 3

This programming project involves writing a program to calculate the terms of the following sequence of

numbers: 0 1 2 5 12 29 ... where each term of the sequence is twice the previous term plus the second

previous term. The 0th term of the sequence is 0 and the 1st term of the sequence is 1.

For example:

0 1 2 -> (0 + 1 + 2) + 2 = 5

0 1 2 5 -> (0 + 1 + 2 + 5) + 5 = 12

0 1 2 5 12 -> (0 + 1 + 2 + 5 + 12) + 12 = 29

…

The interface to the program should be a GUI that looks similar to the following:

The pair of radio buttons allows the user to choose whether an iterative or recursive method is used to

compute the term of the sequence. When the user enters a value for n and then clicks the Compute button,

the nth term of the sequence should be displayed in the Result field. The Efficiency field should contain the

number of calls to the recursive method when the recursive option is chosen and the number of iterations

of the loop when the iterative option is selected.

The Iterative radio button should be initially set to selected.

When the window is closed, the efficiency values should be computed with values of n from 0 to 10 and

written to a file. Each line of the file should contain the value of n, the efficiency of the iterative method

for that value of n and the efficiency of the recursive method. The values should be separated by commas

so the file can be opened with Excel and used to graph the value of the efficiencies for both the iterative

and recursive options along the y axis with the value of n along the x-axis. The graph should be included

in the Word document that accompanies this project and should also contain a brief explanation of the

observed results.

The program should consist of two classes.

1. The first class should define the GUI. In addition to the main method and a constructor to build

the GUI, an event handler will be needed to handle the Compute button click and another handler

will be needed to produce the file described above when the window is closed. The latter handler

should be an object of an inner class that extends the WindowAdapter class.

2

2. The other class should be named Sequence. It should be a utility class meaning that all its

methods must be class (static) methods and no objects should be able to be generated for that

class. It should contain three public methods:

a. The first method computeIterative should accept a value of n and return the corresponding

element in the sequence using iteration.

b. The second method computeRecursive should accept a value of n and return the

corresponding element in the sequence using recursion. This method will be a helper method

because it will need to initialize the efficiency counter before calling the private recursive

method that will actually perform the recursive computation.

c. The third method getEfficiency will return the efficiency counter left behind by the previous

call to either of the above two methods.

The google recommended Java style guide, provided as link in the week 2 content, should be used to

format and document your code. Specifically, the following style guide attributes should be addressed:

 Header comments include filename, author, date and brief purpose of the program.

 In-line comments used to describe major functionality of the code.

 Meaningful variable names and prompts applied.

 Class names are written in UpperCamelCase.

 Variable names are written in lowerCamelCase.

 Constant names are in written in All Capitals.

 Braces use K&R style.

In addition the following design constraints should be followed:

 Declare all instance variables private

 Avoid the duplication of code

Test cases should be supplied in the form of table with columns indicating the input values, expected

output, actual output and if the test case passed or failed. This table should contain 4 columns with

appropriate labels and a row for each test case. Note that the actual output should be the actual results

you receive when running your program and applying the input for the test record. Be sure to select

enough different scenarios to completely test the program.

Note: All code should compile and run without issue.

Submission requirements

Deliverables include all Java files (.java) and a single word (or PDF) document. The Java files should be

named appropriately for your applications. The word (or PDF) document should include screen captures

showing the successful compiling and running of each of the test cases. Each screen capture should be

properly labeled clearly indicated what the screen capture represents. The test cases table should be

included in your word or PDF document and properly labeled as well.

Submit your files to the Project 3 assignment area no later than the due date listed in your LEO classroom.

You should include your name and P3 in your word (or PDF) file submitted (e.g.

firstnamelastnameP3.docx or firstnamelastnameP3.pdf).

3

Grading Rubric:

The following grading rubric will be used to determine your grade:

Attribute Meets Does not meet

GUI Class 40 points

Defines the GUI

Contains a pair of radio buttons
allowing the user to choose
whether an iterative or
recursive method is used to
compute the term of the
sequence.

Allows the user to enter a value
for n and click the Compute
button, to display the nth term
of the sequence in the Result
field.

Allows the Efficiency field to
contain the number of calls to
the recursive method when the
recursive option is chosen and
the number of iterations of the
loop when the iterative option
is selected.

The Iterative radio button is
initially set to selected.

When the window is closed, the
efficiency values computes with
values of n from 0 to 10 and
writes them to a file.

 Each line of the output file
contains the value of n, the
efficiency of the iterative
method for that value of n and
the efficiency of the recursive
method.

0 points

Does not defines the GUI

Does not contain a pair of radio
buttons allowing the user to
choose whether an iterative or
recursive method is used to
compute the term of the
sequence.

Does not allows the user to
enter a value for n and click the
Compute button, to display the
nth term of the sequence in the
Result field.

Does not allow the Efficiency
field to contain the number of
calls to the recursive method
when the recursive option is
chosen and the number of
iterations of the loop when the
iterative option is selected.

The Iterative radio button is not
initially set to selected.

When the window is closed, the
efficiency values does not
compute with values of n from
0 to 10 and writes them to a
file.

 Each line of the output file does
not contain the value of n, the
efficiency of the iterative
method for that value of n and
the efficiency of the recursive
method.

4

The values of the output file are
separated by commas so the file
can be opened with Excel.

Provides an event handler to
handle the Compute button
click and another handler will
be needed to produce the file
described above when the
window is closed. The latter
handler is an object of an inner
class that extends the
WindowAdapter class.

The values of the output file are
not separated by commas so
the file can be opened with
Excel.

Does not provides an event
handler to handle the Compute
button click and another
handler will be needed to
produce the file described
above when the window is
closed. The latter handler is an
object of an inner class that
extends the WindowAdapter
class.

Code does not Compile.

Sequence class 30 points

All methods are class (static)
methods.

Contains three public methods.

Contains computeIterative
method that accepts a value of
n and returns the corresponding
element in the sequence using
iteration.

Contains method
computeRecursive that accepts
a value of n and returns the
corresponding element in the
sequence using recursion.

The computeRecurvise method
will initialize the efficiency
counter before calling the
private recursive method that
will actually perform the
recursive computation.

The getEfficiency method
returns the efficiency counter
left behind by the previous call

0 points

All methods are not class
(static) methods.

Does not contain three public
methods.

Does not contain the
computeIterative method that
accepts a value of n and returns
the corresponding element in
the sequence using iteration.

Does not contain the
computeRecursive method that
accepts a value of n and returns
the corresponding element in
the sequence using recursion.

The computeRecurvise method
does not initialize the efficiency
counter before calling the
private recursive method that
will actually perform the
recursive computation.

The getEfficiency method does
not return the efficiency
counter left behind by the

5

to either of the above two
methods.

previous call to either of the
above two methods.

Code does not Compile.

Test Cases 10 points

Test cases are supplied in the
form of table with columns
indicating the input values,
expected output, actual output
and if the test case passed or
failed.

Enough scenarios selected to
completely test the program.

Test cases were included in the
supporting word or PDF
documentation.

0 points

No test cases were provided.

Documentation and Style guide 20 points

Screen captures were provided
and labeled for compiling your
code, and running each of your
test cases.

Header comments include
filename, author, date and brief
purpose of the program.

In-line comments used to
describe major functionality of
the code.

Meaningful variable names and
prompts applied.

Class names are written in
UpperCamelCase.

Variable names are written in
lowerCamelCase.

Constant names are in written
in All Capitals.

0 points

No documentation included.

Java style guide was not used to
prepare the Java code.

All instance variables not
declared private.

Duplication of code was not
avoided.

Does not graph the value of the
efficiencies for both the
iterative and recursive options
along the y axis with the value
of n along the x-axis. The graph
is not included in the Word
document and does not contain
a brief explanation of the
observed results.

6

Braces use K&R style.

Declare all instance variables
private.

Avoids the duplication of code.

Graphs the value of the
efficiencies for both the
iterative and recursive options
along the y axis with the value
of n along the x-axis. The graph
is included in the Word
document and contains a brief
explanation of the observed
results.

