
Topic % Excellent (100%) Good (75%) Fair (30%) Poor (0%)

Naming 5%
Files are not named properly.

User Item List 10%
User item list is prompted and
validated correctly in the Main
Method.

User item list is prompted and
validated in the Main Method, but
there are minor errors.

There are major errors in
prompting the user for item list.

User is not prompted and item list
is hard-coded.

TextToArray
Function

15%

TextToArray function is setup
correctly, accepts a text string as a
parameter and returns a string
array to the Main.

TextToArray function is setup
correctly, accepts a text string as
a parameter and returns a string
array to the Main, but there are
minor errors.

There are major errors in the
TextToArray function.

TextToArray function does not
function or exist.

PromptForCosts
Function

15%

PromptForCosts function is setup
correctly, accepts a string array as
a parameter and returns a decimal
array to the Main.

PromptForCosts function is setup
correctly, accepts a string array as
a parameter and returns a decimal
array to the Main, but there are
minor errors.

There are major errors in the
PromptForCosts function.

PromptForCosts function does not
function or exist.

User Prompted
Costs

15%

User is prompted in the
PromptForCosts Function for the
cost of each event. Cost is
validated, converted to the correct
data type and stored in an array.

User is prompted in the
PromptForCosts Function for the
cost of each event. Cost is
validated, converted to the correct
data type and stored in an array.
However, there are minor errors.

There are major errors in
prompting the user for costs.

User is not prompted for costs of
the items or they are hard-coded.

SumOfCosts
Function

15%

SumOfCosts function is setup
correctly, accepts a decimal array
as a parameter and returns a
decimal variable.

SumOfCosts function is setup
correctly, accepts a decimal array
as a parameter and returns a
decimal variable. However there
are minor errors.

There are major errors in the
SumOfCosts function.

SumOfCosts function does not
function or exist.

Final Result 20% Final Total is correct and formatted
correctly.

Final Total is correct but is not
formatted correctly.

Test Values 5%
No test values are present

Programming Fundamentals

Technical
The submitted files follow the correct naming convention of Lastname_Firstname_FinalProject

Final Project Rubric Scalable Data Infrastructures: MDV2330

Bare Minimum Requirements
These requirements must be satisfied before any points are awarded. Failing to meet these requirements will result in a zero (0) grade.
1. Working C# file with no major syntax errors and no runtime errors.
2. You must submit the whole project folder and not just the .cs file.

Final result is missing or is not correct.

Test values are present in a multi-lined comment at the end of each section, contain the required values to
test and are all correct.

Activity:	Final	Project	
	
OVERVIEW:	
For	this	last	assignment	we	will	be	combining	everything	that	you	have	learned	this	month	into	
one	final	project	that	will	test	all	of	your	skills.	
	
LEVEL	OF	EFFORT:	
This	activity	should	take	approximately	240	to	complete.	It	will	require:	

• 0m	Research	
• 15m	Prep	&	Delivery	
• 225m	Work	

If	you	find	that	this	activity	takes	you	significantly	less	or	more	time	than	this	estimate,	please	
contact	me	for	guidance.	
	
READING	&	RESOURCES:	
Final	Project		-	Rubric	(necessary)	
The	rubric	on	the	first	page	of	this	document	outlines	the	points	for	the	assignment.		
Make	sure	you	check	off	each	one	as	done	before	submitting	your	assignment!	
	
	
	 	

	

INSTRUCTIONS:	
1. Before	you	begin,	you	should	read	the	rubric	on	page	1.		This	is	extremely	important,	as	

it	will	tell	you	exactly	how	this	assignment	will	be	graded.	
	

2. Create	a	project	called	Lastname_Firstname_FinalProject.	
	

3. In	this	assignment	you	will	have	the	following	objectives:	
a. Add	comments	that	include	your	name,	term,	assignment	name	and	class.	
b. Create	a	ReadLine	in	the	Main	method	to	accept	input	from	the	user.	
c. Create	a	multiple	functions	that	will	solve	the	problem.		All	functionality	to	solve	

the	problem	should	be	contained	in	these	methods	as	described	below.	
d. Final	output	must	be	in	the	Main	method.	

	
4. How	you	solve	the	problem	is	not	as	important	as	finding	a	way	to	do	it,	so	do	not	feel	

limited	in	what	you’re	allowed	to	do.			
	

5. The	only	limitation	is	that	you	cannot	go	outside	the	scope	of	this	course;	that	is,	you	
cannot	use	anything	outside	the	scope	of	this	class	to	solve	the	problem.			

a. If	do	use	anything	outside	of	this	class	as	part	of	your	solution,	you	will	receive	a	
0.	
	

6. Place	your	name,	date,	and	assignment	at	the	top	of	your	code	in	a	multi-lined	comment.	
	

7. Make	sure	to	comment	every	important	line	of	code	so	that	you	are	explaining	exactly	
what	you	are	trying	to	do.	
	

8. Your	code	should	give	the	user	meaningful	output.		So,	after	your	calculations	are	
complete,	your	code	should	report	back	to	the	user	the	final	values	with	a	
Console.WriteLine().			

a. This	should	contain	the	variables	that	you	calculated	and	a	concatenation	text	
string	that	describes	the	value.	

b. e.g.		Console.WriteLine	(“The	area	of	the	rectangle	is	“	+calcArea+	”!”);	
	

9. Zip	your	whole	project	folder	and	upload	this	file	to	FSO.	
	
	 	

	
Item	List	Check	Out	
	
INSTRUCTIONS:	

1. You	will	be	asking	the	user	for	a	comma-separated	list	of	events	that	they	wish	to	buy	
tickets	for.	

a. Validate	this	to	make	sure	it	is	not	left	blank.	
b. Send	this	text	string	into	the	custom	function	TextToArray.	

	
2. Create	a	custom	function	named	TextToArray	that	will	split	apart	the	user’s	list	text	

string	into	an	array	of	individual	events.		
a. Make	sure	to	remove	any	spaces	before	or	after	the	event	itself.	
b. Return	this	array	of	events	to	be	purchased	to	the	Main	method.	

	
3. Once	you	have	the	string	array	of	events	back	in	your	Main	Method	create	a	2nd	custom	

function	called	PromptForCosts.	
a. This	function	should	accept	the	string	array	of	events.	
b. Inside	of	this	function	create	an	array	to	hold	the	costs	of	these	events.	

i. Note	the	length	of	this	Array	or	ArrayList	must	be	depended	on	how	
many	events	the	user	typed	in.	AKA	do	NOT	hard-code	this.	

c. Loop	through	the	events	array	and	prompt	the	user	for	the	cost	of	each	event	in	
the	array.	

i. Validate	that	the	user	is	typing	in	a	valid	response.	
ii. Once	it	is	validated,	store	this	cost	inside	of	the	cost	array.	

d. After	you	get	each	cost,	Return	this	array	to	the	Main.	
	

4. After	catching	the	returned	cost	Array,	create	one	last	custom	function	called	
SumOfCosts.	

a. This	array	should	accept	the	cost	array	as	a	parameter.	
b. Inside	of	this	function	create	a	variable	to	hold	the	total	sum	of	the	events	costs.	
c. Loop	through	each	item	in	the	cost	Array	and	add	their	total	to	the	sum.	
d. Return	this	sum	to	the	Main	method.	

	
5. Use	the	total	sum	variable	that	is	return	in	a	final	output	to	the	user	that	is	in	this	

format.	
a. “The	total	cost	of	all	of	your	events	will	be	$X.”	

i. Where	X	is	a	formatted	text	string	that	contains	the	cost	rounded	to	2	
digits.	
	

6. Test,	Test,	Test		
a. Test	your	code	using	the	data	below	and	at	the	very	least	2	more	times	and	put	

your	Test	Results	in	a	multi-lined	comment	at	the	end	of	your	Main	Method.	
	

7. When	you	are	finished	zip	your	whole	folder	and	submit	it	on	FSO.	
	

	
	 	

Test	Values:	
• Event	List	–	“Fiddler	On	The	Roof,	Guardians	Of	The	Galaxy	2,	Wonder	Woman”	

o Fiddler	On	The	Roof	Cost	–	50.00	
o Guardians	Of	The	Galaxy	2	Cost–	Twelve	Dollars	

§ Re-prompted	New	Cost-	12.00		
o Wonder	Woman	Cost	–	15.00	

• Final	Results	-	“The	total	cost	of	all	of	your	events	will	be	$77.00.”	
	
	
TURNING	IT	IN:	

• Double-check	that	you’ve	commented	your	code	(You	can’t	comment	too	much).	
• Compress	your	Lastname_Firstname_FinalProject folder	into	one	zipped	file.		It	should	

be	named	Lastname_Firstname_FinalProject.zip	
• Upload	this	zipped	file	to	FSO.	This	is	the	file	I	will	unzip	and	run	to	verify	it	works	and	

review	your	code.	
• You	must	zip	the	whole	folder	and	not	just	the	one	individual	C#	file.	If	you	only	submit	

a	.cs	file	you	will	get	a	zero	for	the	whole	project.	
	
Don’t	Forget:	
Make	sure	your	project	follows	this	list	of	criteria:	

• The	result	should	appear	in	the	console	and	include	an	explanation	of	the	result.	
o Good	example	of	console	print	out:	The	volume	of	the	sphere	is	26	feet	cubed.	
o Bad	example	of	console	print	out:	26	

• Final	output	should	use	string	concatenation.	
• Comment	every	line	of	code	(describe	what	each	line	is	doing	in	English).	Do	NOT	just	

label	sections	of	your	code.	
	

