Lecture 1

163 williams st 3rd floor: tutor center

Monday, July 24, 2017

7:21 PM

Information processor: input and output (ex computer)

-repetitious process

-reliability

==>still need human interaction

Reference doc: java API

Run the program: press window key and R>type in cmd

Hardwarez;

Von Newman Architecture :

Input==> memory unit<====>CPU-CU ======>output

 -ALU

CPU: central processing unit==> directs and controls information processing

CU: control unit

Memory unit: storage

-unit for data to be processed

-stores programs during execution

-Primary: RAM==>dynamic (goes away after execution)

-higher the ram bc mimic the speed of CPU speed

-Secondary: hard drive, CD, floppy

Computer:

-hardware:

-input: keyboard, mic, scanner. Mouse

-output: printer

-software

Cmputer instructions

-Input/output: transfer data btw peipherals and primary memory

-ALU: perform arithemtic operation or logical oerations on data stored in primary memory

-Selection statement:

-Interative (loops/repitition)

-Methods (functions)

Machine language

Binary: 0 1 switch/ transistor

Bit 0 or 1

Byte 8 bits

Low level language

=>assembly-represented by mnemonics

Address

001

101

Content

11011001

10111011

Mnemonic

ADD

SUB

MlY

PIV

Machine languge

11011

101101

11011

1101101

Compiler: translate low level language into machine code/language

Assembly program==>assembly lowpile==>machine code

High level language

-more english like (common english words)

-easier to read

-ex. C++, Ruby, etc==>machine dependent

==>Java: machine independent; HTML isnt a language

High level language program==>high level compiler==>machine code/language

Java

-objective orientated program

-platform (machine) neutral

One computer==>information processer

Two computer==>creates a network==>share information

More computers==>internet

Java source code (.java) ===> java compiler (javac.exe)===> Java byte code (.class)====> java interpreter/Virtue Machine (VM) (java.exe)

Compiled vs interpreted
-compiled info to .exe (faster): java, C++
-interpreted is line by line: shell, perl

Complier:

Syntax: formal rules governing the construction of valid instructions (grammar)
Semantics: the meaning of the instructions
Everything is process driven

c:\directory>javac.exe ===>Hello java

c:\directory>java.exe ===>Hello

(Hello world)

c:\directory>

Sample program:

Hello.java (name of the class is captial and should be the same w the file name)

Comment(//): good comments are important

//hello world

Public class Hello {

public static void main (String [] args) {

System.out.println ("Hello World");

}//end main

}//end class
Note:
; ==>denote a statement
Java ignores everything except spaces btw words
Reserved words (p35): special meaning for java
Java doesn’t use reserved words for identifier
-identifier is a name associated with an object which the program can refer to
-ie:variable names, class names
==>must begin with a letter or "_" or '$' made up of (a-z, A-Z) and digits (0-9)

Sample 2: Assume NY area code is 212. Create a program that prints NY area code

AreaCode.java

public class AreaCode {

pubic static void main (String [] args) {

System.out.print ("the area code for"); //no new line (output instruction)
System.out.println ("NY is 212"); //new line (output instruction)

}//end main

}//end class

-very detailed ==> one step at a time

Java only sees statements

c:\ javac.exe AreaCode.java
c:\ java.exe AreaCode

Lecture 2
Monday, September 11, 2017
6:12 PM
Hw1: due on the 18th @6pm

Java
Object oriented programming (OOP):
-a concept in programming technique
-based on objects
-not focus on how but focus on "what"
Client server

Reuse improves reliability

3 ideas to OOP:
-data encapsulation: hiding details>focus on "what" not "how"
>data/function
-Inheritance
-Polymorphism
We are the user and the producer

Software Components:
-Java API (application programming interface)
P193

import package.class;
Or
import package*;
import java.util.Scanner
. (the dot notation): the dot tells you what function

Java program operate on data
program runs in the memory unit
-must declare a data type in memory location before use

8 Primitive data types:
-4 variations of a whole number (integer):
-byte: 8 bits>-128 to 127
-short:16 bits
-int: 32 bits
-long: 64 bits
-2 variation of decimal:
-float:
-double:
-char: one single character
-boolean: true/false

data type: the type of data in memory location
Java is a strong data type of language

Wrapper classes/objects: mainly used for conversion from one data type to another
-Byte
-Short
-Integer
-Long
-Float
-Double
-Character
-Boolean
-Void

Variable:
-an indentifier
-a name of a memory location where data is stored or retrieved
-we need to allocate space in memory to store value
-called variable because value changes
-no space in variable name
-syntax: data.type variable _name;
e.g. int x;
x=100;
x=50;

Double PayRate;
PayRate=15.0 (cant use $ because it changes the syntax)
Always declare the data type

Literal:
-a name constant: a memory location, like a variable; but does not change in value
-syntax: data.type variable rome=literal value;
final double PI=3.14;
final double taxpyc=.0935;

E.g. Output the sum of two numbers (in notepad)

public class Sum {

 public static void main (String [] args){

 int num1; num1 30
 int num2; num2 44

 int sum; sum 74
 num1 = 30;
 num2 = 40;

 sum = num1 + num2; The sum is 74

 System.out.println("The sum is" + sum);
 }

}
Definitions:
Statements (;):
-forms the smallest executable unit in a java program
Assignment (=):
-used to change a value in memory
-take the right side of assignment assigned to the left side of assignment
Expression:
-composed of one or more operations
-e.g. a=b+c (b,c are operands, "+"is an operator)
Arithmetic operators:
*: multipication, a*b
/ : division: a/b
%: modulus: a%b (remainder, only for integer types)
+: addition, a+b
-: subtraction, a-b
ex. a= a op b
a=a+b;
a +=b;
[image: image1.png]

[image: image2.png]

[image: image3.png]

Lecture 3
9/27: midterm
-written in class no tech
Wednesday, September 13, 2017
6:09 PM

For hw#2 hints: 64 cents: 2 quarters, 1 dime, 0 nickles, 4 pennies
Ex. Given a radius. Calculate the circumference of a circle

public class Circumference {
 public static void main(String [] args) {

 int radius;
 final double pi = 3.14;
 double circumference;

 radius = 20

 circumference = 2 * radius * pi

 System.out.println("The circumference is" + circumference);

 }

}

On BB, under documents: all class examples
Float and double: double holds more value

Must declare a data type for each variable

Same example but more flexible: TYPICAL TEST QUESTION

import java.util.Scanner;

public class Circumference {
 public static void main(String [] args) {
 Scanner scan = new scanner (System.in);
 int inputValue;

 int radius;
 //final double pi = 3.14;
 final double pi = Math.PI;
 double circumference;

 System.out.println("Enter a radius value");
 inputValue = scan.nextInt();

 //System.outprintln("Input value is " + inputValue);

 radius = inputValue;

 circumference = 2 * radius * pi

 System.out.println("The circumference is" + circumference);

 }

}
Comments:

Scan:

inputValue: 15

radius: 15

pi: 3.14

circumference:

PC: dir

Equality, Relational and logical operators:

-used to control program
-evaluate to true or false (boolean expression)

! Logical not : ex. If boolean a=true, !a means false
< less than: n1<n2 (int n1, n2;)
<= less than or equal: n1<=n2
>greater than: n1>n2
>= greater than or equal: n1>n2
== equality: n1==n2
!=: not equal n1!=n2
&& logical and: expression && expression
|| logical or: expression || expression
Double quotes destrings

It changes the value

For this class we accept that we only input integers

Truth tables: must memorize this

And:
F F =>F
F T=>F
T F=>F
T T=>T

Or:
F F=>F
F T=>T
T F=>T
T T=>T
TYPICAL TEST QUESTIONS
Ex. (8>5) && (8<3)
(8>5): true
(8<3): false
&&: and
According to the truth table: And T F=>F
&& take precedence over ||

Precedence:
-operator precedence: order in which operators or evaluated in a compound expression
-need to understand to avoid confusion
-parenthesis will break the order of precedence and will get evaluated first
-Order of precedence
*,/,%
+,-
<,<=,>,>=
==, !=
&&
||
=
-some level of precedence will be evaluated from left to right
-evaluate()first

Ex. TYPICAL TEST QUESTION
6+3*4/2+2:
-6+12/2+2
-6+6+2=14

4*5+7*2:
-20+7*2
-20+14=34

4*(5+7*2):
-4*(5+14)
-4*19=76

Increment/decrement operators:

-Increment/decrement value in memory by 1
a++; //post increment: a=a+1(same as a+=1); execution after statement (;)
++a; //pre increment: execution before statement(;)
a--; //post decrement:
--a; //pre decrement:
Ex. Int num=34;
System.out.println ("num=" + num++);
==>num will be 35

int num=34;
int a;
a=2+num++
==>num is originally 34 but execute before; so num becomes 35, a=37

TYPICAL TEST QUESTION
Ex.
Int age;
Age=19;
If(age>=18){
 System.out.println("ok to vote");
 System.out.println("ok to drive");
} else
 System.out.println("too young");

Logical statements:

-making decisions by a program
-if statement: test a particular boolean expression, if expression evaluate to true, an action or set up action are executed
-if (boolean expression) is true, execute the following one or multiple statements
-if else, else (execute if the statement was false)
Ex.
If (age>=18);
 System.out.println("ok to vote")

==>semicolon killed the if statement

Ex. Read input (midterm and final)
-calculate average
-if average >=70, "pass"
Else "fail"

Import java.util.Scanner;
public class average {
 public static void main(String[] args) {
 Scanner scan = new Scanner (System.in);
 int input;

 int midterm_exam;
 int final_exam;

 double avg;

 System.out.println ("Enter midterm");
 midterm_exam = scan.nextInt();

 System.out.println ("Enter final");
 final_exam = scan.nextInt();

 System.out.println("midterm=" + midterm_exam);
 System.out.println("final=" + final_exam);
 avg = (midterm_exam +final_exam) /2.0;

 System.out.println("avg = " +avg);

//method one
 if (avg>=90)
 System.out.println("A");
else
 if (avg>=80)
 System.out.println("B");
else
 if (avg>=70)
 System.out.println("C");
else {
 System.out.println("F");
 System.out.println("Try again");
}

//method two
/*
 if (avg>=90 && avg <= 100)
 System.out.println("A");

 if (avg>=80 && avg<90)
 System.out.println("B");

 if (avg>=70 && avg<80)
 System.out.println("C");

 if (avg<70)
 System.out.println("F");
*/

/*
 if (avg >= 70)
 System.out.println("Pass");
else
 System.out.println("Fail");
*/

 }
}
Comments:

final: a reserved word, cant be used as a variable

Everything is sequential unless its redirected

Variables:
-scan:
-midterm_exam: 90
-final_exam:80
-avg:85

Turn the results into letter grades
A:90-100
B: 80-90
C: 70-80
F: <70

Not use else at all (method 2) or you use else everywhere(method 1)

Else:
-only works on the most recent "if" statement
-else is mutually exclusive

/*: comment out stuff (for educational purposes in the example)

{}: its purpose is to have multiple expressions (under method one)
